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A B S T R A C T

We propose a novel micromagnetic standard problem calculating the coercive field for unpinning a domain
wall at the interface of a multiphase magnet. This problem is sensitive to discontinuities in material parameters
for the exchange interaction, the uniaxial anisotropy, and the spontaneous magnetization. We derive an
explicit treatment of jump conditions at material interfaces for the exchange interaction in the finite-difference
discretization. The micromagnetic simulation results are compared with analytical solutions and show good
agreement. The proposed standard problem is well-suited to test the implementation of both finite-difference
and finite-element simulation codes.
1. Introduction

Micromagnetic simulations have proven to be an essential tool to
support the research and development of magnetic devices such as
magnetic random access memory [1] or magnetic sensors [2]. Through
ongoing miniaturization, these devices enter the domain of micromag-
netics, where sub-micrometer magnetic structures such as domain walls
or vortices become relevant.

To validate the implementation of such micromagnetic simulation
codes and prevent common pitfalls, the micromagnetics community
proposes specific test cases referred to as standard problems. One of
the most prominent collections of such standard problems for ferro-
magnetic materials is from the micromagnetic modeling activity group
(𝜇MAG) from the National Institute of Standards and Technology.
This collection is hosted on their website.1 These standard problems
test magnetic properties resulting from the modeled micromagnetic
interactions like hysteresis loops (sp1, sp2), static behavior (sp3), dy-
namics of a magnetic film (sp4), and spin-transfer torque (sp5, [3]).
Further standard problems are proposed in more recent literature.
These include numerical examples on spin waves [4], ferromagnetic
resonance [5], and the Dzyaloshinskii–Moriya interaction [6]. These
standard problems have become an essential part of the validation
of micromagnetic simulation software for the micromagnetic commu-
nity. However, all of these standard problems treat a single magnetic
material. This manuscript, therefore, proposes a micromagnetic stan-

∗ Corresponding author.
E-mail address: paul.thomas.heistracher@univie.ac.at (P. Heistracher).

1 https://www.ctcms.nist.gov/~rdm/mumag.org.html.

dard problem assessing the correct treatment of interface effects in a
multiphase magnet.

2. Micromagnetic model

The micromagnetic model is a semi-classical description of mag-
netism as it combines quantum-mechanical effects, such as the ex-
change interaction, with a classical continuous field description of
magnetism [7]. The central assumption of the micromagnetic model is
that ferromagnetic ordering due to the exchange interaction dominates
the magnetic ordering on a local scale. This ferromagnetic ordering
keeps the magnetization in parallel on a characteristic length scale 𝜆,
which is well above the lattice constant 𝑎 of the material. For distinct
magnetic moments 𝑺𝒊 and 𝑺𝒋 at locations 𝒓𝒊 and 𝒓𝒋 , respectively, we
can assume

𝑺𝒊 ≈ 𝑺𝒋 for |𝒓𝒊 − 𝒓𝒋| < 𝜆 ≫ 𝑎. (1)

The strong ferromagnetic ordering on a local scale gives rise to the
continuum approximation, where we introduce a continuous vector field
𝑴(𝒓), which approximates the local spin density. Given a homogeneous
density of elementary spins, we can express the magnetization in terms
of a unit-vector field 𝒎(𝒓) with

𝑴(𝒓) = 𝑀s𝒎(𝒓) with |𝒎(𝒓)| = 1, (2)

where 𝑀s is the spontaneous magnetization in J/T/m3.
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2.1. Energy contributions

The micromagnetic energy contributions considered in the proposed
standard problem are the exchange interaction 𝐸ex, uniaxial anisotropy
𝐸ani, and external field contributions 𝐸ext. Therefore, the combined
energy 𝐸 of the system reads

𝐸 = 𝐸ex + 𝐸ani + 𝐸ext. (3)

We neglect micromagnetic demagnetization effects in the scope of this
manuscript in order to preserve a simple analytical solution. Analytic
solutions of interface problems including magnetostatic effects are
discussed in [8] and [9].

With an expression of the accumulated energy terms 𝐸, we can
calculate the effective field 𝑯eff as the functional derivative of 𝐸 with
respect to the magnetization 𝒎,

− 𝜇0𝑀s𝑯eff = 𝛿𝐸
𝛿𝒎

, (4)

here 𝜇0 = 1.256 637 062 12 × 10−6 N∕A2 is the vacuum magnetic per-
eability. This effective field is then used to describe the dynamics of

he system, as described in Section 2.2.

.1.1. Exchange interaction
In ferromagnetic materials, the quantum mechanical exchange in-

eraction causes the elementary spins to prefer a parallel alignment.
n the micromagnetic model, this exchange interaction is accounted
or by a phenomenological continuum description with an energy
ontribution 𝐸ex which reads
ex = ∫𝛺

𝐴(𝛁𝒎)2 d𝒙, (5)

here 𝐴 is the micromagnetic exchange constant in J∕m and 𝛺 is the
agnetic domain.

The differential 𝛿𝐸ex can be calculated by variational calculus [7]
pplying an arbitrary test function 𝒗 ∈ 𝑉 with 𝑉 as the function space
f the magnetization 𝒎

𝐸ex(𝒎, 𝒗) = d
d𝜖

[

∫𝛺
𝐴[𝛁(𝒎 + 𝜖𝒗)]2 d𝒙

]

𝜖=0

= 2∫𝛺
𝐴𝛁𝒎 ∶ 𝛁𝒗 d𝒙

= −2∫𝛺
[𝛁 ⋅ (𝐴𝛁𝒎)] ⋅ 𝒗 d𝒙 + 2∫𝜕𝛺

𝐴𝜕𝒏𝒎 ⋅ 𝒗 d𝒔,

(6)

where in the first step, we expanded the square brackets and applied
the derivative with respect to 𝜖. The operator ‘‘∶’’ denotes the sum
of the Hadamard product 𝑎 ∶ 𝑏 =

∑

𝑖,𝑗 𝑎𝑖𝑗𝑏𝑖,𝑗 . In the second step, we
applied partial integration and used the divergence theorem, obtaining
a surface integral. In order to apply the divergence theorem, we assume
that 𝐴𝛁𝒎 is continuously differentiable, i.e., it does not exhibit any
jumps. The expression 𝜕𝒏𝒎 ∶= 𝜕𝒎

𝜕𝒏 denotes the directional derivative
with respect to the surface normal vector 𝒏. Using Eq. (4), we obtain
the effective field for the exchange interaction

𝑯ex = −1
𝜇0𝑀s

𝛿𝐸ex

𝛿𝒎
= −1

𝜇0𝑀s
(−2𝛁 ⋅ 𝐴𝛁𝒎). (7)

The second term yields the exchange boundary condition [7, Eq. (63)]

2𝐴 𝜕𝒏𝒎 = 0, (8)

which demands that the directional derivative disappears at the bound-
ary.

With this derivation in mind, we now discuss the case of an inho-
mogeneous exchange constant 𝐴(𝒙). We assume a two-phase magnetic
material with regions 𝛺I and 𝛺II, as illustrated in Fig. 1. The value of
the exchange parameter differs between the two regions and is specified
to 𝐴(𝒙) = 𝐴I in region 𝛺I and 𝐴(𝒙) = 𝐴II in region 𝛺II. To calculate the
differential 𝛿𝐸ex, we split the integration domain into the two magnetic
2

Fig. 1. Illustration of a two-phase magnetic material consisting of integration regions
𝛺I and 𝛺II with conjunct boundary 𝜕(𝛺I∩𝛺II), disjunct boundary 𝜕(𝛺I∪𝛺II), and normal
ector 𝒏12 pointing from 𝛺I to 𝛺II.

hases and perform the steps from Eq. (6) for each region separately.
e then combine the integration domain of the separate terms and

btain two additional interface terms for the conjunct boundary.

𝐸ex(𝒎, 𝒗) = d
d𝜖

[

∫𝛺I

𝐴I[𝛁(𝒎 + 𝜖𝒗)]2 d𝒙 + ∫𝛺II

𝐴II[𝛁(𝒎 + 𝜖𝒗)]2 d𝒙
]

𝜖=0

= −2∫𝛺
[𝛁 ⋅ (𝐴(𝒙)𝛁𝒎)] ⋅ 𝒗 d𝒙 + 2∫𝜕(𝛺I∪𝛺II)

𝐴(𝒙)𝜕𝒏𝒎 ⋅ 𝒗 d𝒔

+ ∫𝜕(𝛺I∩𝛺II)
𝐴I𝜕𝒏𝒎 ⋅ 𝒗 d𝒔 + ∫𝜕(𝛺I∩𝛺II)

𝐴II𝜕𝒏𝒎 ⋅ 𝒗 d𝒔

(9)

eplacing the surface normal vector 𝒏 for each subdomain at the
nterface between 𝛺I and 𝛺II with 𝒏12, the normal vector pointing from

I to 𝛺II, we obtain

𝐸ex(𝒎, 𝒗) = −2∫𝛺
[𝛁 ⋅ (𝐴(𝒙)𝛁𝒎)] ⋅ 𝒗 d𝒙 + 2∫𝜕(𝛺I∪𝛺II)

𝐴(𝒙)𝜕𝒏𝒎 ⋅ 𝒗 d𝒔

+ ∫𝜕(𝛺I∩𝛺II)
𝐴I𝜕𝒏12𝒎 ⋅ 𝒗 d𝒔 − ∫𝜕(𝛺I∩𝛺II)

𝐴II𝜕𝒏12𝒎 ⋅ 𝒗 d𝒔

(10)

he first two terms in Eq. (10) correspond to the result of Eq. (6).
he first term yields an effective field, while the second term yields
boundary condition defined over the disjunct boundary 𝜕(𝛺I ∪ 𝛺II).
ompared to the homogeneous case, two additional terms occur for
he conjunct boundary 𝜕(𝛺I ∩ 𝛺II) at the interface. These two terms
ust vanish for all test functions 𝒗. Therefore, we obtain the interface

ondition

I𝜕𝒏12𝒎 = 𝐴II𝜕𝒏12𝒎. (11)

his corresponds to the interface condition in [10] and [11, Eq. (6)].
he implications of this jump condition for a finite-difference dis-
retization are discussed in Section 3.2.

.1.2. Uniaxial anisotropy and external field
The second energy contribution we consider is the uniaxial

nisotropy energy, which prefers parallel or antiparallel alignment of
he magnetization along a specific direction. With 𝒆u being the unit
ector along the easy axis, this energy reads

ani = −∫𝛺
𝐾u1(𝒎 ⋅ 𝒆u)2 d𝒙, (12)

here 𝐾u1 is the anisotropy constant in J∕m3. For this interaction, the
esulting effective field reads

ani = 2𝐾
𝜇0𝑀s

𝒆u(𝒆u ⋅𝒎). (13)

Furthermore, the presence of an external magnetic field 𝑯ext con-
ributes to the energy with

ext = −𝜇0 𝑀s𝒎 ⋅𝑯ext d𝒙. (14)
∫𝛺
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Fig. 2. Illustration of jump-condition handling at a material interface in finite-
differences. Cell-based magnetization values (blue) with virtual magnetization 𝒎∗

2 (red)
for evaluating the three-point Laplace stencil at the location of 𝒎1.

2.2. Landau–Lifshitz–Gilbert equation

We combine the three discussed energy contributions into one
effective field 𝑯eff = 𝑯ex + 𝑯ani + 𝑯ext. This effective field can then
be used in the Landau–Lifshitz–Gilbert (LLG) equation to describe the
time evolution of the magnetization
𝜕𝒎
𝜕𝑡

= −
𝛾

1 + 𝛼2
𝒎 ×𝑯eff −

𝛼𝛾
1 + 𝛼2

𝒎 ×
(

𝒎 ×𝑯eff), (15)

where 𝛾 = 𝜇0|𝛾𝑒| ≈ 2.2128 × 105 m∕As is the reduced gyromagnetic ratio
(𝛾𝑒 being the electron gyromagnetic ratio) and 𝛼 ≥ 0 is a dimension-
ess damping parameter. The first term in the LLG equation describes
pin-precession, the second term energy dissipation.

. Field contributions in finite-differences

The two major techniques to discretize the micromagnetic contin-
um model are the finite-difference method and the finite-element
ethod. In the finite-difference discretization, the magnetic domain

s discretized into a uniform cuboid mesh, and the differential oper-
tors are approximated by finite differences. We choose the degrees of
reedom to be in the center of the simulation cells for both the mag-
etization field and the material parameters. This is the predominant
hoice in literature and is also used by [12] and [13].

.1. Exchange field: homogeneous magnet

In the case of a single-phase magnet with a homogeneous exchange
onstant 𝐴, the exchange field in Eq. (7) can be simplified to the form

ex, hom
𝒊 = 2𝐴

𝜇0𝑀s,𝒊
∇2𝒎𝒊 ≈

2𝐴
𝜇0𝑀s,𝒊

∑

𝑘=𝑥,𝑦,𝑧

𝒎𝒊+𝒆𝑘 − 2𝒎𝒊 +𝒎𝒊−𝒆𝑘

𝛥2
𝑘

, (16)

where 𝒊 = {𝑖, 𝑗, 𝑘} is a three-dimensional cell index, 𝒆𝑥, 𝒆𝑦, 𝒆𝑧 are
unit vectors along each axis, and 𝛥𝑥, 𝛥𝑦, 𝛥𝑧 are the cell sizes of the
finite-difference discretization. The three-dimensional discrete Laplace
operator ∇2 is approximated with a second-order central derivative.

Micromagnetic solvers often implement the exchange field for a
homogeneous material by means of a convolution. The sum in Eq. (16)
can be interpreted as a constant Laplace kernel applied to the mag-
netization. This property can no longer be used for inhomogeneous,
cell-dependent exchange values 𝐴𝒊, as no common kernel exists. In this
case, the effective field can be calculated by a sparse matrix–vector
product.

3.2. Exchange field: inhomogeneous magnet and interface conditions

In a multiphase material with different exchange values 𝐴𝒊 per cell,
interface conditions as given in Eq. (11) arise and must be explicitly
3

treated when calculating the exchange field, rendering Eq. (16) invalid.
In the following, we discuss the handling of the interface condition
for the one-dimensional case and then generalize to three dimensions.
Fig. 2 shows a cell-centered finite-difference discretization of a two-
phase magnet. The value of the exchange constant changes from 𝐴1
(red) to 𝐴2 (green) between the magnetizations 𝒎1 and 𝒎2. At the
exchange coupling interface, the first derivative of the magnetization
exhibits a jump given by Eq. (11). For this one-dimensional example,
the interface condition becomes

𝐴1𝒎′
1 = 𝐴2𝒎′

2, (17)

where 𝒎′
1 is the right-hand derivative at the interface, and 𝒎′

2 is the
left-hand derivative, indicated by the red line in Fig. 2. This interface
condition must be taken into account when considering the discretized
Laplace operator.

In first order, we approximate the difference between the two
neighboring magnetizations 𝒎1 and 𝒎2 with the arithmetic mean of the
first derivatives 𝒎′

1 and 𝒎′
2

𝒎2 = 𝒎1 +
𝛥𝑥
2
(

𝒎′
1 +𝒎′

2
)

+ (𝛥2
𝑥). (18)

In alternative terms, given the magnetization 𝒎1 and both derivatives
𝒎′

1 and 𝒎′
2, the magnetization 𝒎2 is obtained by starting at 𝒎1 and

following the slope of 𝒎′
1 in positive 𝑥-direction for a distance of 𝛥𝑥

2
and then the slope 𝒎′

2 for a distance of 𝛥𝑥
2 .

Inserting 𝒎′
2 from (17) and rearranging for 𝒎′

1 yields

𝒎′
1 =

(

𝒎2 −𝒎1
) 2
𝛥𝑥

𝐴2
𝐴1 + 𝐴2

(19)

ith this expression for the derivative, we can introduce a virtual
agnetization 𝒎∗

2

∗
2 = 𝒎1 + 𝛥𝑥𝒎′

1 = 𝒎1 +
2𝐴2

𝐴1 + 𝐴2

(

𝒎2 −𝒎1
)

, (20)

which then can be used in the three-point stencil centered around 𝒎1

𝒎′′ ≈
𝒎0 − 2𝒎1 +𝒎∗

2

𝛥2
𝑥

=
𝒎0 −𝒎1 +

2𝐴2
𝐴1+𝐴2

(

𝒎2 −𝒎1
)

𝛥2
𝑥

. (21)

The exchange field at the position of 𝒎1 then reads

𝑯ex
1 =

2𝐴1
𝜇0𝑀s,1

𝒎0 −𝒎1 +
2𝐴2

𝐴1+𝐴2

(

𝒎2 −𝒎1
)

𝛥2
𝑥

. (22)

We can generalize this special case of a one-dimensional two-phase
magnet to the most general one-dimensional case by assuming a cell-
dependent exchange constant 𝐴𝑖 that varies between each cell 𝑖. The
effective field at site 𝑖 is then given as

𝑯ex
𝑖 =

2𝐴𝑖
𝜇0𝑀s,𝑖

2
𝛥2
𝑥

[

𝐴𝑖+1
𝒎𝑖+1 −𝒎𝑖
𝐴𝑖+1 + 𝐴𝑖

+ 𝐴𝑖−1
𝒎𝑖−1 −𝒎𝑖
𝐴𝑖−1 + 𝐴𝑖

]

(23)

When we consider a three-dimensional finite-difference grid with
a regular cuboid discretization of 𝛥x, 𝛥y, and 𝛥z along each axis, the
exchange field becomes

𝑯ex
𝒊 =

2𝐴𝒊
𝜇0𝑀s,𝒊

∑

𝑘=𝑥,𝑦,𝑧

2
𝛥2
𝑘

[

𝐴𝒊+𝒆𝑘

𝒎𝒊+𝒆𝑘 −𝒎𝒊

𝐴𝒊+𝒆𝑘 + 𝐴𝒊
+ 𝐴𝒊−𝒆𝑘

𝒎𝒊−𝒆𝑘 −𝒎𝒊

𝐴𝒊−𝒆𝑘 + 𝐴𝒊

]

, (24)

where 𝒊 = {𝑖, 𝑗, 𝑘} again is the three-dimensional cell index. The
boundary condition in Eq. (8) is properly accounted for by setting
𝐴𝒊 = 0 if the cell 𝒊 is either non-magnetic or outside the magnetic
domain.

At this point, we would like to note that, compared to the gen-
eralized stencil given in Eq. (24), the same correcting effect can be
achieved by calculating the exchange field assuming a cell-wise 𝐴𝒊
and applying a rescaling of the exchange parameters using a harmonic
mean across each interface. The latter approach is used, for example, in
OOMMF [12] and mumax3 version 3.10+ [13]. These two approaches

are equivalent and lead to identical expressions for the exchange field.
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3.3. Uniaxial anisotropy and external field in finite-differences

The finite-difference discretization can be applied straightforwardly
to the uniaxial anisotropy field and the external field. Assuming a
cell-wise definition of the material parameters, the effective field con-
tribution of the uniaxial anisotropy in Eq. (13) becomes

𝑯ani
𝒊 =

2𝐾𝒊
𝜇0𝑀s,𝒊

𝒆u(𝒆u ⋅𝒎𝒊), (25)

and the external field is applied cell-wise, that is, 𝑯ext
𝒊 .

4. Exchange field in finite-elements

Material jumps in finite-elements can be rigorously treated within
the finite-element framework itself. By calculating the effective field
directly from the variation of the energy, all occurring boundary con-
ditions are correctly taken into account [7]. In the finite-elements dis-
cretization, it is a common choice to assume all material parameters to
be piece-wise constant within each finite-element. This property can be
embedded directly in the framework by using a zeroth-order discontin-
uous Galerkin function space. Moreover, the micromagnetic continuum
approximation for the magnetic field can be directly represented by a
linear continuous Galerkin function space.

In order to evaluate the effective field in finite-elements, we apply
a set of test functions 𝒗 onto Eq. (4)

∫𝛺
−𝜇0𝑀s𝑯eff ⋅ 𝒗 d𝒙 = ∫𝛺

𝛿𝐸
𝛿𝒎

⋅ 𝒗 d𝒙. (26)

This expression correctly treats jumps in material parameters, including
𝑀s.

We highlight that the expression 𝜇0𝑀s stands on the left-hand
side of Eq. (26), not on the right-hand side. When the spontaneous
magnetization 𝑀s is inhomogeneous, this subtle difference has a severe
consequence for the evaluation of effective field terms which involve
derivatives of the magnetization, such as the exchange field. Would we
have written

∫𝛺
𝑯ex ⋅ 𝒗 d𝒙 = ∫𝛺

1
𝜇0𝑀s

(2𝛁 ⋅ 𝐴𝛁𝒎) ⋅ 𝒗 d𝒙

= −∫𝛺
1
𝜇0

2𝐴𝛁𝒎 ⋅ 𝛁
( 1
𝑀s

𝒗
)

d𝒙

+ ∫𝜕𝛺
1

𝜇0𝑀s
2𝐴𝛁𝒎 ⋅ 𝒏 ⋅ 𝒗 d𝒔

(27)

hen evaluating the exchange field, the integration by parts would
ntroduce new boundary terms which would require explicit handling.

In order to avoid such potential errors resulting from discontinuities
n material parameters, we introduce a standard problem that applies
o both finite-difference and finite-element micromagnetic solvers.

. Proposed standard problem

In the following, we propose a standard problem calculating the
oercive field for the unpinning of a domain wall from the interface
f a two-phase magnetic rod. The considered micromagnetic energy
ontributions are the exchange interaction, uniaxial anisotropy, and an
xternal field. The proposed problem has a simple analytic solution
hen neglecting demagnetization, making it well suited for testing
icromagnetic simulation software.

We consider a domain wall pinned at the interface between a soft
agnetic and a hard magnetic phase. Given a higher anisotropy or

xchange interaction in the hard magnetic phase, the micromagnetic
nergy stored in the domain wall is higher in the hard magnetic phase
han in the soft magnetic phase. As a result, the domain wall must
vercome this energy difference when pushed from the soft to the hard
agnetic phase by an external field. This effect is referred to as domain
4

all pinning at a phase boundary.
The applied external field at which the magnetic domain detaches
rom the phase boundary is called the pinning field 𝐻p. An analytical

expression for the pinning field can be derived in the micromagnetic
model for a sharp phase boundary, as is described in [11]. Using
the spontaneous polarization 𝐽s = 𝜇0𝑀s and assuming micromagnetic
parameters 𝐴I, 𝐾 I, 𝐽 I

s in the first magnetic phase and 𝐴II, 𝐾 II, 𝐽 II
s in the

econd magnetic phase with ratios 𝜖𝐴 = 𝐴I∕𝐴II, 𝜖𝐾 = 𝐾 I∕𝐾 II, and
𝐽 = 𝐽 I

s∕𝐽
II
s , the analytical formula for the pinning field 𝐻p reads [11,

q. (10)]

p = 2𝐾 II

𝐽 II
s

1 − 𝜖𝐾𝜖𝐴
(

1 +
√

𝜖𝐽 𝜖𝐴
)2

. (28)

As the pinning field depends on all three material parameters ratios,
this problem is sensitive to the correct treatment of discontinuities
in the exchange, uniaxial anisotropy, and spontaneous magnetization
parameters. Furthermore, we can conveniently vary and test individual
material jumps, as well as combinations thereof. Combined with the
fact that this problem has an analytical solution, the numerical calcu-
lation of the pinning field is well suited as a standard problem to test
interface conditions in micromagnetic codes.

5.1. Problem specification

We consider a rod in the shape of a cuboid consisting of two
magnetic regions with a sharp phase boundary, as illustrated in Fig. 3.
The dimensions of each magnetic phase are 𝑙𝑥 = 40 nm and 𝑙𝑦 = 𝑙𝑧 =
1 nm. We use two sets of micromagnetic parameters, describing a soft
magnetic and a hard magnetic material.

𝐴soft = 0.25 × 10−11 J∕m, 𝐴hard = 1 × 10−11 J∕m

soft = 1 × 105 J∕m3, 𝐾hard = 1 × 106 J∕m3

𝐽s,soft = 0.25 T, 𝐽s,hard = 1.00 T

We always use the hard magnetic parameters for phase II, i.e. 𝐴II =
hard, 𝐾 II = 𝐾hard, 𝐽 II

s = 𝐽s,hard. In phase I, we set the material
arameter to either the soft magnetic or the hard magnetic value. So,
or example, 𝐴I is either 𝐴soft or 𝐴hard. This allows us to test individual
aterial jumps as well as combinations thereof.

In both regions, the uniaxial anisotropy unit vector points in positive
-direction and the damping parameter is set to one.

u = (1, 0, 0)

= 1

The initial magnetization is assumed to point approximately in
ositive 𝑥-direction in phase I, and in negative 𝑥-direction in phase

II, separated by a domain wall at the interface. The domain wall is
pinned at the phase boundary by an external field applied in positive
𝑥-direction. The field increases linearly as a function of the simulation
time 𝑡 in seconds with a certain field rate 𝑟 in A∕m∕s.

𝑯ext(𝑡) = (𝑟 ∗ 𝑡, 0, 0)

When the external field becomes larger than the pinning field 𝐻p,
the domain wall unpins from the interface and propagates through
phase II, ultimately being pushed out of the magnetic rod. The aim of
this standard problem is to calculate this pinning field using micromag-
netic solvers.

6. Numerical results

In this section, we calculate the pinning field using dynamic micro-

magnetic simulations and compare the results to the analytical solution.
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Fig. 3. Illustration of the two-phase magnetic rod geometry (not to scale) with material parameters 𝐴,𝐾, 𝐽s for each phase and indication for the direction of the applied external
field 𝑯ext(𝑡) and the uniaxial anisotropy vector 𝒆u.
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While the proposed standard problem does not specify a particular
discretization size or technique, the chosen cell size has to be below
the exchange length 𝑙ex given by the relation 𝑙ex =

√

𝐴
𝐾 to resolve the

structure of domain walls accurately [7, Eq. (191)].
In the following, we choose to discretize the magnetic rod with 80

cubic cells with an edge length of 1 nm in the finite-difference codes. In
finite-elements, we use a tetrahedral mesh with outer nodes matching
the finite-difference discretization and additional vertices inside the
rod. As an initial magnetization, we set the magnetization in phase I
to (1.0, 0.3, 0)∕‖(1.0, 0.3, 0)‖ ≈ (0.958, 0.287, 0), such that it is facing in
ositive 𝑥-direction with a tilt in the direction of the 𝑦-axis. For phase

II, we set the magnetization to (−1.0, 0.3, 0)∕‖(−1.0, 0.3, 0)‖. This initial
configuration is easy to configure in simulation tools and evolves into a
domain wall when integrated in time. The tilt in the 𝑦-direction is used
to avoid numerical problems due to symmetry. The system is evolved
in time by integrating the LLG equation. The applied field is increased
linearly with a rate of 𝑟 = 2 × 107 T∕s = 1.591 549 43 × 106 A∕m. We
define the numerically calculated pinning field 𝐻𝑛𝑢𝑚

p as the point where
he average 𝑥-component of the magnetization ⟨𝑚𝑥⟩ becomes larger
han (1 − 1 × 10−3) = 0.999. This definition of the pining field is
traightforward to implement in micromagnetic solvers. We are aware
hat this definition leads to slightly higher pinning fields, as it includes
he time the domain wall needs to propagate through phase II. More
recise definitions could be used, such as the point where the domain
all just crossed the interface, but we will use the above definition

hroughout this manuscript for the sake of simplicity.
For the case that all three material parameters jump, the analytical

inning field evaluates to 𝜇0𝐻p ≈ 1.568 T. Fig. 4 shows a section of the
agnetic rod centered at the phase transition as obtained by the finite-
ifference code magnum.af [14]. The arrows indicate the magnetization
irection, and the color encodes the 𝑥-component of the magnetization.
t an external field of 1.585 T, the criterion for 𝐻𝑛𝑢𝑚

p is met as the
domain wall was unpinned and pushed out of the rod, leaving a nearly
homogeneous magnetization pointing in the positive 𝑥-direction. This
result is in good agreement with the expected pinning field of 1.568 T,
considering the additional time the domain wall needs to propagate
through the hard magnetic region.

6.1. Comparison of micromagnetic solvers

In the following, we use this domain wall pinning field to com-
pare several micromagnetic codes, namely the finite-difference codes
OOMMF [12], mumax3 [13] in versions 3.9.3 and 3.10, and magnum.af,
as well as the finite-element code magnum.fe [15]. The input scripts
used to obtain the presented results can be found in the supplementary
5

material for each respective simulation tool.
6.1.1. Jump in 𝐴, 𝐾, 𝐽s
We start with the case that all material parameters jump, that is,

I = 𝐴soft, 𝐾 I = 𝐾soft, 𝐽 I
s = 𝐽s,soft. Fig. 5 shows the average 𝑥-component

f the magnetization plotted over the external field strength. All codes
ield results close to the expected analytical pinning field, except for
umax3.9.3. Using version 3.9.3, we observe a substantial deviation

rom the expected pinning field, predicting a value of around 0.397 T.
his error is introduced by taking a harmonic mean not only over the
xchange constant but over the spontaneous magnetization parameter
s well, as seen in [13, Eq. (9)]. Fortunately, this error is corrected in
he current version 3.10 and is now consistent with the other simulation
ools.

With this standard problem, not only the case that all material
arameters jump can be examined, but also jumps in individual pa-
ameters or combinations thereof. This property makes it possible to
recisely trace potential implementation errors by consecutively testing
ifferent combinations of material jumps, as we demonstrate in the
ollowing by the example of mumax3.9.3.

.1.2. Jump in 𝐴
In the following example, we discuss the case that only the ex-

hange constant 𝐴 varies between the two phases, i.e., 𝐴I = 𝐴soft and
II = 𝐴hard. The uniaxial anisotropy and spontaneous magnetization
arameters are set to the hard magnetic values, 𝐾 I = 𝐾 II = 𝐾hard
nd 𝐽 I

s = 𝐽 II
s = 𝐽s,hard. For these values, the analytical pinning field

valuates to 𝜇0𝐻p ≈ 0.838 T. Fig. 6 compares the calculated pining
ields for the jump in 𝐴. In this case, all codes yield the predicted
esults, including mumax3.9.3. This agreement indicates that the im-
lementation of discontinuities in the exchange parameter does not
ause the previous discrepancy. Rather, the error might originate in
he treatment of jumps in parameters for the uniaxial anisotropy or the
pontaneous magnetization.

.1.3. Jump in 𝐴 and 𝐽s
To trace the error further, we investigate the case where both the

xchange constant 𝐴 and the spontaneous polarization 𝐽s exhibit a
ump at the interface. The micromagnetic parameters therefore are 𝐴I =
soft, 𝐴II = 𝐴hard, 𝐽 I

s = 𝐽s,soft, 𝐽 II
s = 𝐽s,hard, and 𝐾 I = 𝐾 II = 𝐾hard. For

hese values, the analytical pinning field evaluates to 𝜇0𝐻p ≈ 1.206 T.
Fig. 7 compares the results of the simulation codes for a jump in 𝐴

nd 𝐽s. We observe that all codes yield the expected pinning field, again
xcept for mumax3.9.3. In combination with the previous two cases,
his result indicates that jumps in the spontaneous polarization 𝐽s are
andled incorrectly in the implementation of mumax3.9.3. The ability
o selectively vary jumps in material parameters is of high value when
racing errors during the development of micromagnetic simulation
ools.
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Fig. 4. Section of the magnetic rod at the interface between the soft and hard magnetic regions during external field increase from 𝜇0𝐻𝑥 = 0T to 2 T for four selected external field
values. The color code indicates the 𝑥-component of the magnetic field. (a) Initial magnetization, (b) pinned domain wall, (c) compressed domain wall, d) domain wall unpinned
and propagated through the hard magnetic region.
Fig. 5. Comparison of different micromagnetic solvers calculating the domain wall pinning field. Plotted is the average 𝑥-component of the magnetization field over the applied
external field. The black vertical line indicates the analytical pinning field.
6.2. All combinations of material jumps

In the following, we present an overview of all possible combina-
tions of material jumps when individually varying the micromagnetic
parameters in phase I. We denote a jump in the micromagnetic ex-
change constant 𝐴, i.e., 𝐴𝐼 = 𝐴soft and 𝐴𝐼𝐼 = 𝐴hard, with 𝑎. Likewise,
we refer to a jump in 𝐾 with 𝑘 and a jump in 𝐽s with 𝑗. Then all possible
combinations of material jumps can be classified into 23 = 8 cases,
denoted as {𝑎𝑘𝑗, 𝑎𝑘, 𝑎𝑗, 𝑎, 𝑘𝑗, 𝑘, 𝑗,‘‘ ’’}, where ‘‘ ’’ refers to the case with
no jump of any material parameter.

Table 1 compares the analytical pinning field 𝐻p with the calculated
pinning field 𝐻𝑛𝑢𝑚

p for all combinations of jumps in material parameters
𝐴, 𝐾, and 𝐽s. The tick denotes that the respective parameter varies
between the phases, whereas, for a missing tick, the hard magnetic
parameter is used. For the cases 𝑘𝑗 and 𝑗, we use a starting field
with a magnitude of 0.1 ∗ 𝐻 to prevent the domain wall from being
6

p

pushed out of the soft magnetic material in negative 𝑥-direction before
the external field strength is high enough to pin it against the phase
boundary. This non-zero starting field is then steadily increased with
the same field rate 𝑟. We compare the analytical solution with the
numerical results obtained by the finite-difference solver magnum.af
and observe good agreement. The offset in the order of tens of mT is
caused by the relaxation process using integration in the time domain
and depends on the rate of the external field increase. Reducing the
rate decreases the offset while increasing simulation time. Table 1 is
intended to be used as a reference for testing this standard problem in
other micromagnetic codes.

At this point, we would like to emphasize that by neglecting mag-
netostatic effects, we choose an artificial problem for the sake of
simplicity. Realistic micromagnetic simulations would include demag-
netization effects as discussed, for example, in [8,9,16]. In principle,
magnetostatic effects can be added to the proposed standard problem,
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Fig. 6. Comparison of micromagnetic codes calculating the pinning field for the case
that only the exchange constant 𝐴 jumps between phase I and phase II of the magnetic
rod.

Fig. 7. Comparison of micromagnetic codes calculating the pinning field for the case
that both the exchange constant 𝐴 and the spontaneous polarization 𝐽s jump between
hase I and phase II.

able 1
able showing all possible combinations of jumps in 𝐴, 𝐾, and 𝐽s with corresponding
nalytical pining field 𝐻p and numerically calculated field 𝐻𝑛𝑢𝑚

p as obtained by the
imulation tool magnum.af with an external field rate of 𝑟 = 2 × 107 T∕s.
Case 𝐴 jump 𝐾 jump 𝐽s jump 𝐻p[T] 𝐻𝑛𝑢𝑚

p [T]

𝑎𝑘𝑗 × × × 1.568 1.585
𝑎𝑘 × × 1.089 1.116
𝑎𝑗 × × 1.206 1.256
𝑎 × 0.838 0.868
𝑘𝑗 × × 1.005 1.020
𝑘 × 0.565 0.582
𝑗 × 0.0 0.068
‘‘ ’’ 0.0 0.068

and doing so would lead to higher pinning fields as the demagnetiza-
tion field would prefer domain wall structures over a homogeneous
7

magnetization. However, we neglect demagnetization effects to keep
the proposed problem as simple as possible, retain a simple analytical
solution, and emphasize the correct treatment of boundary conditions.

7. Conclusion

We present a standard problem that calculates the coercive field
for the unpinning of a domain wall from a two-phase magnetic rod
interface. This problem is sensitive to discontinuities in the micromag-
netic parameters for the exchange interaction, the uniaxial anisotropy,
and the spontaneous magnetization. We derive the interface condition
for the exchange interaction in finite-differences and verify that our
simulations agree with the analytical solutions. The proposed problem
is well suited to verify the correct implementation of material jumps
in both finite-difference and finite-element micromagnetic simulation
codes. Therefore, we encourage authors of micromagnetic simulation
tools to use this domain wall pinning problem to test their solvers for
the proper treatment of discontinuities in material parameters.

CRediT authorship contribution statement

Paul Heistracher: Methodology, Software, Validation, Writing –
original draft. Claas Abert: Conceptualization, Methodology, Writing
– review & editing. Florian Bruckner: Methodology, Writing – review
& editing. Thomas Schrefl: Conceptualization, Writing – review & edit-
ing. Dieter Suess: Conceptualization, Supervision, Funding acquisition,
Writing – review & editing.

Declaration of competing interest

The authors declare that they have no known competing finan-
cial interests or personal relationships that could have appeared to
influence the work reported in this paper.

Acknowledgments

The financial support by the Austrian Science Fund (FWF) under
grant No. I4917, the Austrian Federal Ministry for Digital and Economic
Affairs, the National Foundation for Research, Technology and Devel-
opment, and the Christian Doppler Research Association is gratefully
acknowledged.

Appendix A. Supplementary data

Supplementary material related to this article can be found online
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