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Abstract: The morphometry of the hip and pelvis can be evaluated in native radiographs. Artificial-
intelligence-assisted analyses provide objective, accurate, and reproducible results. This study in-
vestigates the performance of an artificial intelligence (AI)-based software using deep learning al-
gorithms to measure radiological parameters that identify femoroacetabular impingement and hip 
dysplasia. Sixty-two radiographs (124 hips) were manually evaluated by three observers and fully 
automated analyses were performed by an AI-driven software (HIPPO™, ImageBiopsy Lab, Vi-
enna, Austria). We compared the performance of the three human readers with the HIPPO™ using 
a Bayesian mixed model. For this purpose, we used the absolute deviation from the median ratings 
of all readers and HIPPO™. Our results indicate a high probability that the AI-driven software ranks 
better than at least one manual reader for the majority of outcome measures. Hence, fully automated 
analyses could provide reproducible results and facilitate identifying radiographic signs of hip dis-
orders. 

Keywords: femoroacetabular impingement; hip dysplasia; X-ray; radiographs; artificial intelli-
gence; machine learning; neuronal networks 
 

1. Introduction 
Hip dysplasia and femoroacetabular impingement (FAI) are risk factors for the de-

velopment of osteoarthritis of the hip [1,2]. These disorders often occur concomitantly, 
and early diagnosis is crucial so that treatment may be initiated before permanent damage 
appears [3,4]. 

In 2003, Ganz et al. provided a comprehensive overview on the concept of femoroa-
cetabular impingement [5]. Our understanding of the pathogenesis has grown signifi-
cantly since then. FAI is defined as a dynamic conflict of the proximal femur and the ace-
tabulum, caused by early engagement during motion, mainly flexion and internal rotation 
of the hip [5]. Intra-articular impingement is subdivided in cam- and pincer-type FAI, 
although combinations frequently occur [1]. Additionally, the femoral torsion contributes 
to the development of FAI. Cam-type FAI is caused by a deformity at the antero-superior 
femoral head–neck junction with an aspherical contour that produces compression and 
shearing forces at the labrum and articular cartilage of the acetabulum [6]. When it re-
mains untreated, this can lead to chondro-labral separation, degeneration of the labrum, 
and the delamination of the articular cartilage. Pincer-type FAI is characterized by an ex-
cessive acetabular coverage of the femoral head that results in a compression of the la-
brum between the acetabulum and the femoral neck. Pincer deformity can be caused by 
deep acetabula (i.e., protrusion) or a prominent anterior wall (i.e., retroversion). Regard-
less of the type of deformity, untreated FAI causes damage to the hip and osteoarthritis 
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may develop. Symptomatic FAI in adolescents should primarily be treated non-opera-
tively. However, hip arthroscopy shows significant improvement of clinical symptoms 
and high return-to-sport rates [3]. 

Hip dysplasia is defined by a reduced acetabular coverage of the femoral head, fre-
quently with a decreased lateral center-edge angle and an increased acetabular index. This 
leads to a decreased contact area of the load-bearing articular cartilage and increased con-
tact pressures [7]. The prevalence of hip dysplasia in an asymptomatic population is re-
ported to be between 3.6% and 12.8%, depending on the radiographic applied [8,9]. 
Known risk factors are female sex, breech presentation, and family history [10]. For joint 
preservation in young patients, a surgical correction of hip dysplasia osteotomies of the 
acetabulum is performed with additional hip arthroscopy to address intraarticular pathol-
ogies. 

The diagnoses of FAI and hip dysplasia are primarily made clinically by detecting a 
decreased range of motion and pain with flexion and internal rotation. However, imaging 
plays a crucial role in the quantitative deformity analysis and preoperative assessment. 
Plain radiographs still represent the gold standard, followed by more advanced imaging 
techniques such as magnetic resonance imaging (MRI) or magnetic resonance (MR)-ar-
thrography [11]. Standard imaging includes conventional radiographs (antero-posterior 
(AP) pelvis, Lauenstein view, or Faux profile) to evaluate the geometry and morphometry 
of the hip joint, including acetabular coverage and the asphericity of the femoral head. 

The manual measurement of these parameters is a tedious and time-consuming task 
which demonstrates high inter- and intra-observer differences [12]. Automated, artificial-
intelligence-assisted analyses could provide objective, highly accurate, and reproducible 
results when compared to manual readers [13,14]. However, AI analyses depend on the 
training data used and potential bias could be introduced. When investigated for reliabil-
ity and agreement, measurements that could be performed directly showed better results 
than those that needed estimation, such as the acetabular index or caput-collum-diaph-
yseal (CCD) angle [15]. Furthermore, it has been shown that the agreement rate of ortho-
pedic surgeons and radiologists is good within their specialty, but simultaneously reflects 
low reliability between different specialties [16]. 

The aim of the present work was to investigate the performance of an AI-driven soft-
ware in analyzing the most common radiographic parameters for hip and pelvic morphol-
ogy compared to manual measurements. 

2. Materials and Methods 
This retrospective study was approved by the Lower Austria ethics committee (GS4-

EK-3/173-2020). Native, weight-bearing AP radiographs of the pelvis were collected for 
this study. These were consecutively acquired between November 2019 and January 2020 
at the Landesklinikum Baden-Mödling. Individual informed consent was waived by the 
ethics committee due to the retrospective study design and the pseudonymization of the 
data. Inclusion criteria were defined as male and female adults aged between 18 and 60 
years and radiographs which complied with the quality standards. Image quality was as-
sessed before readers started the annotation process. The assessment included checks for 
incorrect image cropping, clear visibility of bone contours, and excessive tilt and rotation, 
as well as a tilted sensor. Exclusion criteria included severe deformities, detectable surgi-
cal implants, and post-traumatic cases. All radiographs were acquired with the same de-
vice (DigitalDiagnost, Philips). 

2.1. Manual Measurement 
Manual measurements were carried out independently by three investigators (C.S., 

C.R., P.R.). All investigators were orthopedic surgeons with a minimum of five years’ ex-
perience in musculoskeletal imaging. The annotations were obtained using mediCAD® 
(FAI module v6.0, mediCAD Hectec GmbH, Altdorf/Landshut, Germany), according to 
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the user’s manual workflow (Figure 1). Each reader was blinded to the AI results, worked 
independently, and annotated each image in the same order. 

 
Figure 1. Representative image of the manual measurements for an AP radiograph of the pelvis 
using mediCAD®. 

2.2. Automated Measurements Using AI Software 
Automated analyses were accomplished by using a commercially available, AI-based 

software (HIPPO™, CE version, HIP Positioning Assistant, ImageBiopsy Lab, Vienna, 
Austria). HIPPO™ was developed using deep learning algorithms and trained on over 
4000 individual radiographs of the pelvis and hip. Radiographs for the training data were 
acquired from a total of three sources: the Osteoarthritis Initiative study, the Cohort Hip 
and Cohort Knee study, and from an orthopedic hospital in Austria. The readers of the 
present study were not involved in generating the training dataset. HIPPO™ automati-
cally detects and localizes anatomically relevant landmarks on the hip and pelvis. The AI 
follows the established radiological workflow: measurement of anatomical distances and 
angles, detection of disease morphologies, and provision of standardized reporting (Fig-
ure 2). HIPPO™ performs a consensus assessment for each radiograph. Every detection 
step is performed by three AI models, which then vote for the appropriate result. IB Lab 
HIPPO™ is comprised of multiple convolutional deep neural networks (CNNs) which 
operate on either all or part of the input images and perform segmentation, landmarking, 
and detection tasks. A detailed description of the calculation logic and the CNNs is pro-
vided in Supplement File S1. 

 
Figure 2. AI software (HIPPO™) report of an AP radiograph of the pelvis providing fully automated 
measurements. 
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2.3. Measurements 
To evaluate the geometry and morphometry of the hip joint and pelvis, the following 

measurements were performed: CCD angle, lateral center-edge (LCE) angle, acetabular 
index (Tönnis angle and sourcil angle), femoral head extrusion index, and Sharp angle 
(Figure 3). 

 
Figure 3. Radiographic measurement for the evaluation of the hip morphology used in this study. 

2.4. Statistical Analysis 
We used a Bayesian approach in our analysis, which has several advantages over 

conventional frequentist methods. These advantages include an ease of interpretation and 
the avoidance of issues related to null hypothesis significance testing. In our case, the 
Bayesian approach allowed us to compare the performance of the individual human read-
ers with the AI and account for the fact that there is no real ground truth available. For 
this purpose, we used the surface under the cumulative ranking (SUCRA) metric. We 
ranked the readers and the AI according to the absolute deviation from the median of 
ratings from all readers and the AI. To measure performance, we used the SUCRA metric. 
We ranked the readers and the AI based on the absolute deviation from the median of 
ratings from all readers and the AI. The lowest possible rank of four readers was four, and 
a probability of 50% of a rank of two in the plot indicates that the probability for a specific 
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reader to rank at least place two was 50%. All analyses were conducted in the R environ-
ment (version 4.2.1) using the tidyverse package for data wrangling and plot creation. The 
calculations were performed using the Markov chain Monte Carlo via the brms package. 
We used restrictive priors for our analyses, preventing negative values for the absolute 
deviation. We calculated an interaction model (reader by outcome) with suppressed in-
tercept. The model settings in specific were: 𝐴𝑏𝑠𝑜𝑙𝑢𝑡𝑒 𝐷𝑒𝑣𝑖𝑎𝑡𝑖𝑜𝑛௜ ~ 𝑁𝑜𝑟𝑚𝑎𝑙ሺ𝜇௜, 𝜎ሻ 𝜇௜ ൌ 𝛾௥௘௔ௗ௘௥ሾ௜ሿ  ൈ  𝛽௢௨௧௖௢௠௘ሾ௝ሿ 𝛾௜, 𝛽௝ ~ 𝐿𝑜𝑔𝑛𝑜𝑟𝑚𝑎𝑙ሺ0, 3ሻ, for i = 1, …, 4 and j = 1, …, 6 𝜎ఊ, 𝜎ఉ~ 𝐻𝑎𝑙𝑓𝐶𝑎𝑢𝑐ℎ𝑦ሺ0, 4ሻ 

3. Results 
A total of 62 radiographs (124 hips) were included in this study (age: 36.9 ± 11.6 years; 

34 female, 28 male). Two outliers were identified, which were caused by an erroneous 
analysis by the AI software (Figure 4). The following plots exclude these outliers. An anal-
ysis including the outliers is provided in Supplement File S2. 

The deviations from the median for all observations are displayed in Figure 5. The 
deviations from the median for each outcome measurement and all readers are displayed 
in Figure 6. The corresponding absolute deviations are displayed in Figures 7 and 8. The 
SUCRA plots show the probabilities that an individual reader ranks better (meaning less 
absolute deviation from the median) than a certain rank (Figure 9). Except for the CCD, 
the AI software showed high probabilities to outperform at least one manual reader. For 
the extrusion index, the femur head coverage, the LCE, and the acetabular index, the prob-
ability for the software to rank at least place three was nearly 100%; for the Sharp angle, it 
was over 80%. The detailed results for the SUCRA plots are provided in Supplement File 
S2. Our models indicate a good fit (Rhat = 1.00; Bulk_ESS ≥ 7323; and Tail_ESS ≥ 2374). 

 
Figure 4. HIPPO™ erroneous reports of two AP radiographs of the pelvis that were identified as 
outliers. (a) Pelvic obliquity resulted in a cropped proximal femur and the anatomical femur axis 
could not be identified correctly. (b) The proximal femur is barely visible and the anatomical femur 
axis could not be identified correctly. 
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Figure 5. Deviation from the median for each individual observation for all readers and HIPPO™. 

 
Figure 6. Deviations from the median for each individual observation for all measurements for read-
ers one to three and HIPPO™. 



Diagnostics 2023, 13, 497 7 of 13 
 

 

 
Figure 7. Absolute deviation from the median for each individual observation for all readers and 
HIPPO™. 

 
Figure 8. Absolute deviation from the median for all measurements for all readers and HIPPO™. 
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Figure 9. SUCRA (surface under the cumulative ranking) plots for (a) CCD, (b) extrusion index, (c) 
femur head coverage, (d) LCE, (e) Sharp angle, and (f) Tönnis angle. The plots indicate the proba-
bilities that a reader ranks better (i.e., less absolute deviation from the median) than a certain rank. 

4. Discussion 
The main finding of this study was that the AI-based software produced reliable re-

sults for common radiographic parameters when determining the morphology of the hip 
and pelvis. In addition, when compared with the manual measurements, the AI-results 
showed a high probability to perform better than at least one manual reader for all meas-
urements except CCD. 

A profound radiographic evaluation is mandatory in patients with FAI and hip dys-
plasia. Both pathologies are associated with early-onset osteoarthritis of the hip, and early 
detection allows for joint-preserving procedures such as periacetabular osteotomies or hip 
arthroscopy [2,3]. Analyses are usually performed manually by a radiologist or an ortho-
pedic surgeon. The standard manual workflow for radiographic analysis of the hip and 
pelvic morphology using a commercially available medical software involves: identifying 
the hip joint center, defining a reference line for the pelvic orientation, and measuring the 
CCD angle, LCE angle, the acetabular index, the femoral head extrusion index, and the 
Sharp angle. 

The AI-driven software used in this study includes multiple convolutional deep neu-
ral networks that perform segmentation, landmarking, and detection. Anatomical land-
marks are detected fully automated and every detection step is performed by three AI 
models simultaneously that then vote for a result. The software was developed using deep 
learning algorithms. Deep learning goes beyond machine learning as it uses neural net-
works [17]. In deep learning, large amounts of data can be processed and analyzed and, 
by using neural networks, information that already exists can be interpreted and further 
processed. Acquired information can be merged with new data to be used for future ap-
plications. An increasing number of publications investigate AI-driven software for vari-
ous diagnostic applications and outcome prediction across all medical disciplines. In the 
field of orthopedics, these applications include fracture detection, classification of osteo-
arthritis and bone age, and automated measurements of the lower extremities [18]. AI ap-
plications for hip radiographs include the assessment of hip arthroplasties, fracture detec-
tion, and the automated detection of anatomical landmarks [19–23]. 

In a study investigating the classification of hip fractures, a machine learning method 
achieved an overall accuracy of 92% and was able to classify hip fractures with a 19% 
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greater accuracy than humans [19]. However, the applied software was a prototype and 
is not ready for clinical use. 

Recently, two publications investigated radiographic signs of hip dysplasia on ap ra-
diographs of the pelvis [13,14]. Archer et al. used the same AI-based software in an exter-
nal validation study to assess patients with proven adult hip dysplasia [14]. Three manual 
reader’s measurements were compared to AI measurements for the measurements pro-
vided by HIPPO™. The authors choose conventional frequentist methods for statistical 
analyses. The inter-reader analysis demonstrated fair to excellent agreement. However, 
for several analyses, including of the Tönnis angle and CCD, wide confidence intervals 
were observed. When applying an AI software for radiographic measurements, the results 
are often compared with a “ground truth” that is defined by manual readers. This ap-
proach has various disadvantages, including the inaccuracy caused by a high interrater 
variability that deteriorates the ground truth. In order to acquire a ground truth, the num-
ber of manual readers would have to be high and should include only specialists that 
ideally reach agreement for every observation and every measurement. Therefore, to ac-
count for these shortcomings, we used a Bayesian approach to compare the performance 
of the individual human readers with the AI-driven software. Compared with conven-
tional frequentist methods, this approach has several advantages, including facilitation of 
interpretation and the avoidance of issues related to null-hypothesis significance testing. 
As the authors used the same commercially available and CE-certified software, the anal-
yses were carried out in a standardized fashion. However, this study investigated proven 
cases of hip dysplasia and patients without normal hip anatomy without pathological 
findings were not included. 

In a similar approach, Jensen et al. tested a newly developed deep learning algorithm 
for the radiographic measurement of the hip (RBhip™, Radiobotics). The agreement be-
tween the algorithm and five human readers for measuring the LCE angle and the acetab-
ular index was investigated. In accordance with the available literature, the manual meas-
urements were susceptible to high inter-reader differences and the level of agreement be-
tween the algorithm and manual readers was poor [13]. 

Jang et al. developed and evaluated an automated measurement model for ap pelvic 
radiographs [20]. After training, the CNN model was able to define anatomical landmarks 
without manual labeling, and these landmarks were used to calculate the femoral head 
extrusion index, Sharp angle, Tönnis angle, and CE angle of Wiberg using automatic al-
gorithms. The percentage of correct key points with a 3mm threshold ranged from 87% to 
100%, and the intraclass correlation between the model and the reference standard was 
0.83 to 0.93. 

Table 1 provides an overview of recent studies using deep learning approaches for 
hip radiographs. 

However, there is still a paucity of prospective studies and randomized trials for 
deep learning applications in musculoskeletal imaging in the present literature [24]. The 
majority of existing studies are not prospective, contain a high risk of bias, and do not use 
reporting standards. Furthermore, manual comparison groups are often small and studies 
develop and test deep learning algorithms without open-source access. 

Amongst other factors, AI was introduced in orthopedics to reduce the human failure 
rate and increase reproducibility. In this study, the manual analysis of a bilateral hip im-
age took approximately six minutes per radiograph. In contrast, the automated measure-
ments and resulting standardized report by the AI-driven software was completed within 
under 30 s. These time-saving effects support previous reports [14]. Furthermore, manual 
readers show elevated rates of errors with fatigue [25,26]. Independent of experience and 
fatigue, AI reduces the impact of interrater variability in radiographic morphology assess-
ment of the hip. 

For all observations, mean deviations from the median showed an even distribution 
for all readers and HIPPO™. However, when disaggregated for the different measure-
ments, differences between the readers become apparent. For the CCD, the manual 
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readers and HIPPO™ showed a similar distribution of observations with an even spread 
around the mean. In contrast, for measurements that included the labeling of the lateral 
acetabular edge, we observed differences between the individual manual readers, indicat-
ing a methodical deviation. For these measurements, the AI-based software showed val-
ues in between the manual readers. The software was trained on over 4000 individual 
radiographs acquired from large international cohorts and automatically detects and lo-
calizes anatomically relevant landmarks. Thereby, the AI performs a consensus assess-
ment for three AI models for each radiograph and is not prone to subjective assessments 
and ratings. Our analyses indicate that individual readers might be susceptible to system-
atic disagreement that result in either positive or negative deviations from the median. 
The AI software showed no deviation in any direction greater than a manual reader. The 
SUCRA plots indicate a non-inferiority for the AI-driven software. 

In our study, the AI software showed erroneous measurements for two hips. In both 
cases, the anatomical femur axis could not be localized correctly due to pelvic obliquity 
and excessive cropping of the proximal femur. Hence, the CCD showed incorrect values, 
while the measurements based on the femoral head and acetabulum were not affected. In 
this context, it needs to be emphasized that, in the current state of development, all auto-
mated measurements performed by an AI software need to be checked and confirmed by 
the user. 

Currently, properly acquired radiographs are essential for the precise analysis of ra-
diological signs of FAI and dysplasia, as there is a high variability when comparing pelvic-
focused views and radiographs acquired in a supine position. In the future, with enough 
training and validation data, AI-driven software might be able to compensate for poor 
image quality. Although more advanced imaging techniques, such as MRI or MR-arthrog-
raphy, are in use for the diagnosis of hip disorders and show higher sensitivities, plain 
radiography with hip projections remains the basic diagnostic imaging tool [11]. AI appli-
cations are capable of processing large numbers of images very quickly and can be used 
for standardized and reproducible analysis. 

Our results demonstrate that the most common radiographic parameters for FAI and 
hip dysplasia can be determined in a fully automated method with an accuracy compara-
ble to manual readers.  

This study has some limitations. First, the parameters that were evaluated in this 
study do not cover the complete radiological analysis for FAI and hip dysplasia. For in-
stance, the crossover sign to identify acetabular retroversion was not assessed and meas-
urements were performed on AP radiographs. For Cam-type FAI, a Dunn view projection 
is typically also used for detecting femoral head–neck asphericity with increased sensitiv-
ity. The quality assessment for the inclusion of radiographs for this study was performed 
manually and did not include objective ratings for pelvic obliquity or malrotation, result-
ing in a potential risk for selection bias. Furthermore, the manual measurements in this 
study were performed only by orthopedic surgeons, introducing a potential bias in the 
analyses. Hence, the reliability between different specialties could not be investigated. 

Table 1. Selection of studies on artificial intelligence and measurements of the hip. ap = anterior-
posterior CE = center-edge angle of Wiberg, FHEI = femoral head extrusion index, PCK = percentage 
of correct key points, ICC = intraclass correlation index, r = Pearson’s coefficient, RMSE = root mean 
square error, MAE = mean absolute error, CCD = caput-collum-diaphyseal angle, THA = total hip 
arthroplasty, DSC = Dice similarity coefficient, DL = deep learning, AIA = acetabular index angle, 
LOA = limits of agreement. 

Reference Purpose Method Results and Performance 

Jang et al., 
2022 [20] 

Automated 
determination of hip 

joint center 

U-Net used for identification 
of bony landmarks and 

pelvic height ratio. 
A total of 6344 ap hip 
radiographs used for 

Prediction within 5 mm of 
error: 80% with nonspecific, 
83% sex-specific. And 91% 
with patient-specific pelvic 

height ratio. 
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training, and used 1252 for 
testing. 

Compared to manual 
segmentation. 

Yang et al., 
2020 [22] 

Feasibility Study for 
automated 

measurement of the hip 
joint (determination of 

CE, Tönnis angle, Sharp 
angle, FHEI) 

Identification of bony 
landmarks. 

A total of 1060 ap hip 
radiographs used for 

training, and 200 used for 
testing. 

Compared to three 
radiologists. 

PCK: 87%–100%, ICC: 0.8–
0.93, r: 0.83–0.93, RMSE: 

0.02–3.27, MAE: 0.02–1.79. 

Archer et al., 
2022 [14] 

Detection of Hip 
dysplasia through 

lateral CE, CCD, pelvic 
obliquity, Tönnis angle, 

Sharp angle, femoral 
head coverage using 

HIPPO™ 

HIPPO™ used for 
Identification of bony 

landmarks.  
256 ap hip radiographs for 

testing.  
Compared to three medical 
students who underwent 

instructions form one senior 
radiologist. 

ICC for lateral CE: 0.71–0.86, 
for CCD: 0.62–0.79, for pelvic 

obliquity: 0.83–0.98,  
for Tönnis angle: 0.82–0.90, 

for Sharp angle: 0.74–0.86, for 
femoral head coverage: 0.5–

0.73. 

Rouzrokh et 
al., 2021 [21] 

Automated 
measurement of 

acetabular component 
and version after THA 

2 U-Net models for 
Segmentation of bilateral 

ischial tuberosity on 600 ap 
hip radiographs and 

acetabular component on 600 
ap and cross-table lateral hip 

radiographs. 
Training, validation and 
testing split in 8:1:1 ratio. 

Compared to two orthopedic 
surgeons. 

For ap and cross-table lateral 
radiograph models, 

respectively: 
egmentation: mean DSC 

0.878 and 0.903, 
Acetabular component 
angles: mean absolute 

difference 1.35° and 1.39°. 

Rouzrokh et 
al., 2022 [23]  

Creating THA 
radiography registry 
using deep learning  

Four DL algorithms used for 
determination of radiograph 
appearance on 846,988 hip 

and pelvis radiographs. 
Compared to human 

annotators on random test 
sample of 5000 radiographs. 

209,331 radiographs were 
excluded as misclassified. 

Accuracy: 99.9%, precision: 
99.6%, recall: 99.5%, F1-score: 

99.6%.  
Registry automatically 

annotated in <8 h 

Jensen et al., 
2022 [13] 

Detection of hip 
dysplasia through 
lateral CE and AIA 

RBHip™ trained on 2900 
pelvic radiographs, tested on 

71 pelvic radiographs. 
Comparison to ground truth: 

5 clinicians. 

Lateral CE: Bland–Altman 
LoA ranging from 0.37 to 

9.56 and 3.56 to 10.1 for right 
and left hip, respectively. 
AIA: Bland-Altman LoA 

ranging from  
−0.58 to 2.06 and −1.09 to 1.28 

for right and left hip, 
respectively.  

5. Conclusions 
An AI-driven software can provide fully automated measurements of native, weight-

bearing AP radiographs of the pelvis with great accuracy and reproducibility. Using deep 
learning algorithms can facilitate the identification of radiographic signs of femoroacetab-
ular impingement and hip dysplasia. However, diagnoses need to be confirmed by med-
ical professionals. 
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