

Evidenzbasiertes Informationszentrum für ÄrztInnen

Hepatozelluläres Karzinom: Stereotaktische Radiotherapie vs. chirurgische Exzision

erstellt von Dr. Anna Glechner, Piotr Ratajczak PhD, Dr. Brigitte Piso MPH, Dipl.-Kult. Irma Klerings

https://www.ebminfo.at/Hepatozellulaeres_Karzinom

Bitte den Rapid Review wie folgt zitieren:

Glechner A., Ratajczak P., Piso B., Klerings I., Hepatozelluläres Karzinom: Stereotaktische Radiotherapie vs. chirurgische Exzision: Rapid Review. EbM Ärzteinformationszentrum; September 2022. DOI: 10.48341/5wnr-1r97

Available from: https://www.ebminfo.at/Hepatozellulaeres_Karzinom

EbM Ärzteinformationszentrum

Department für Evidenzbasierte Medizin und Evaluation
Universität für Weiterbildung Krems

Anfrage / PIKO-Frage

Ist eine stereotaktische Radiotherapie bei PatientInnen mit nicht fortgeschrittenem hepatozellulären Karzinom ebenso effektiv wie eine chirurgische Exzision, um ein Fortschreiten der Erkrankung zu verhindern und die Überlebensraten zu erhöhen?

Ergebnisse

Studien

Wir fanden drei retrospektive Kohortenstudien mit Daten von 355 PatientInnen mit nicht fortgeschrittenem hepatozellulären Karzinom, die entweder mit einer stereotaktischen Radiotherapie oder mit einer chirurgischen Exzision behandelt wurden (1-4). Um ähnliche, miteinander vergleichbare Gruppen zu bilden, war dabei jeweils ein Propensity Score Matching angewendet worden. Zwei dieser Studien mit 274 PatientInnen wurden methodisch besser durchgeführt (3, 4). Die berücksichtigen PatientInnen hatten keine Metastasen, und der Großteil wies nur eine Leberläsion auf. Die Ergebnisse der dritten Studie haben ein hohes Verzerrungsrisiko, weil unklar bleibt, wie viele PatientInnen mit einer transarteriellen Chemoembolisation vorbehandelt wurden (1).

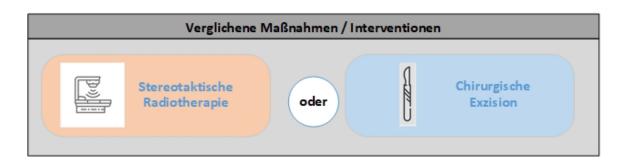
Resultate

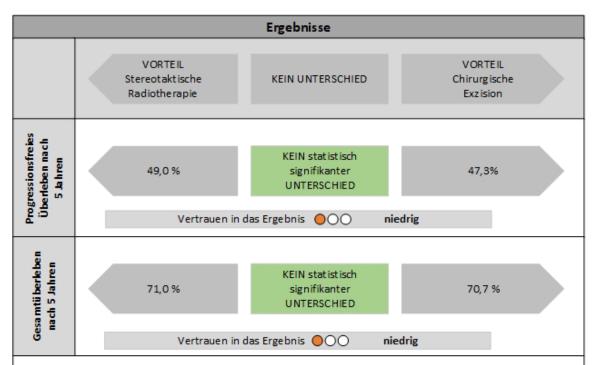
Rezidiv nach zwei bis fünf Jahren

Zwei Studien mit insgesamt 147 PatientInnen ergaben bezüglich der Rezidivrate keinen statistisch signifikanten Unterschied zwischen stereotaktischer Radiotherapie und chirurgischer Exzision (1, 3). Eine der beiden Studien hatte ein hohes Verzerrungsrisiko (1).

• Progressionsfreies Überleben nach fünf Jahren

Die zwei methodisch besseren Studien (3, 4) mit 274 PatientInnen zeigten ähnliche Raten ohne statistisch signifikante Unterschiede zwischen den beiden Methoden (Tabelle 1). In der größeren Studie mit 208 PatientInnen lag das Progressionsfreie Überleben bei 48 Prozent nach stereotaktischer Radiotherapie bzw. bei 46 Prozent nach chirurgischer Exzision (p=0,35).


Gesamtüberleben nach fünf Jahren


In den zwei methodisch besseren Studien reichte das Gesamtüberleben in den beiden Behandlungsgruppen von 71 bis 74 Prozent, ohne statistisch signifikante Unterschiede zwischen den beiden Behandlungsgruppen (Tabelle 1).

Vertrauen in das Ergebnis

Siehe Abbildung 1 und Tabelle 1 Aufgrund der verwendeten Studiendesigns ist das Vertrauen in die Ergebnisse niedrig. Das Vertrauen in die Ergebnisse der Studie mit hohem Verzerrungsrisiko ist unzureichend.

Untersuchungsgruppe Erwachsene mit nicht fortgeschrittenem hepatozellulären Karzinom

Interpretation der Ergebnisse: basierend auf einer retrospektiven Kohortenstudie mit 208 PatientInnen

- 1) Progressionfreies Überleben: Kein statistisch signifikanter Unterschied zwischen stereotaktischer Radiotherapie und chirurgischer Exzision (p=0,35). Ergebnisse einer zweiten, methodisch gut durchgeführten retrospektiven Kohortenstudie mit 66 PatientInnen konsistent. Aufgrund der Studiendesigns ist das Vertrauen in das Ergebnis niedrig.
- 2) Gesamtüberleben: Kein statistisch signifikanter Unterschied zwischen stereotaktischer Radiotherapie und chirurgischer Exzision (p= 0,67). Ergebnisse einer zweiten, methodisch gut durchgeführten retrospektiven Kohortenstudie mit 66 Patientlnnen konsistent. Aufgrund der Studiendesigns ist das Vertrauen in das Ergebnis niedrig.

Disclaimen: Die Ergebnisse spiegeln nur die Studienlage und können PraktikerInnen bei der Entscheidungsfindung helfen- sie ersetzen aber nicht individuelle Abwägungen.

 $\textbf{Urheberrechter Bild 1: @SciePro/ shutterstock.com; Bild 2: @studicon/ shutterstock.com; Bild 3: @GhostDesigner/ shutterstock.com; Bild 3: @GhostDesigner$

Methoden

Um relevante Studien zu finden, hat eine Informationsspezialistin in folgenden Datenbanken recherchiert: Ovid MEDLINE, Cochrane Library und Epistemonikos. Die verwendeten Suchbegriffe leiteten sich vom MeSH-System (Medical Subject Headings System) der National Library of Medicine ab. Zusätzlich wurde mittels Freitexts gesucht und eine Pubmed-similar-articles-Suche durchgeführt. Als Ausgangsreferenzen dienten Publikationen, deren Abstracts in der Vorabsuche als potenziell relevant identifiziert worden waren. Die Suche erfasste alle Studien bis 28. Juni 2022. Der vorliegende Rapid Review fasst die beste Evidenz zusammen, die in den genannten Datenbanken zu diesem Thema durch Literatursuche zu gewinnen war. Die Methoden von der Frage bis zur Erstellung des fertigen Rapid Reviews sind auf unserer Website abrufbar: http://www.ebminfo.at/wpcontent/uploads/Methoden-Manual.pdf

Einleitung

Die stereotaktische Radiotherapie ist eine Option für PatientInnen mit hepatozellulärem Karzinom, die keine extrahepatische Erkrankung haben, eine begrenzte Tumorlast aufweisen und deren Leberfunktion relativ gut erhalten ist (5). Die Erfahrungen mit der stereotaktischen Radiotherapie bei primären Lebertumoren nehmen zu. Bei den bisherigen Studien dazu handelt es sich jedoch in der Mehrzahl um solche mit PatientInnen mit Lebertumoren, die nicht für eine chirurgische Resektion geeignet sind, beispielsweise aufgrund einer fortgeschrittenen Zirrhose oder einer schwierigen Lage des Tumors.

Derzeit läuft eine randomisierte kontrollierte Studie (RCT), die bei PatientInnen mit hepatozellulärem Karzinom im Frühstadium eine stereotaktische Radiotherapie mit einer chirurgischen Therapie vergleicht (6). Wir suchten zusätzlich nach Kohortenstudien, die bei PatientInnen mit operablen Lebertumoren beide Behandlungsmöglichkeiten untersuchen.

Resultate

Studien

Wir fanden drei retrospektive Kohortenstudien mit insgesamt 715 PatientInnen mit hepatozelluärem Karzinom, die entweder mit einer stereotaktischen Radiotherapie oder einer chirurgischen Exzision behandelt wurden (1-4). Aus diesen drei Studien berücksichtigten wir ausschließlich Daten von 355 PatientInnen, bei denen mittels Propensity Score Matchings zwei ähnliche Gruppen gebildet wurden, um stereotaktische Radiotherapie und chirurgische Exzision besser zu vergleichen zu können. Zwei der Studien mit Daten von 274 PatientInnen, die zuvor noch keine Behandlung erhalten hatten, waren methodisch besser durchgeführt (3, 4). Sie schlossen PatientInnen ein, die zu 96 bis 100 Prozent eine Läsion in der Leber aufwiesen, der Rest hatte zwei Läsionen. Der Durchmesser der Tumore betrug 5 cm oder weniger. Es wurden nur PatientInnen berücksichtigt, bei denen die Portalvene nicht von Tumor befallen war und die keine Metastasen hatten (3, 4). Eine Child-Pugh-Klasse-A-

Zirrhose ließ sich in den beiden Studien bei 88 bis 100 Prozent der PatientInnen nachweisen, der Rest hatte eine Child-Pugh-B-Zirrhose. In der Größeren der beiden Studien mit 208 PatientInnen wiesen 29 Prozent eine Leberfunktion ALBI-GRADE I auf, 71 Prozent wurden als ALBI-GRADE 2 eingestuft.

In der dritten Studie (1) hatten 67 Prozent nur eine Läsion in der Leber, die 3 cm oder weniger maß. Der Rest der PatientInnen hatte zwei Läsionen. In dieser Studie war angegeben, dass man nur PatientInnen berücksichtigt hatte, bei denen eine kurative Behandlung möglich war (1). Sie schloss auch PatientInnen ein, die innerhalb von drei Monaten vor Studienbeginn eine Transarterielle Chemoembolisation (TACE) erhalten hatten, wobei unklar bleibt, wie viele Personen vorbehandelt wurden und ob der Anteil in beiden Behandlungsgruppen gleich verteilt war. Aufgrund der ungenauen Beschreibung der Population stuften wir das Verzerrungsrisiko der Studie als hoch ein.

In der größten Studie wurde die stereotaktische Bestrahlung in Dosen von 48 bis 54 Gy in fünf bis acht Fraktionen vorgenommen. Die Isodosenkurve umfasste 100 Prozent des Brutto-Tumorvolumens. In der zweiten, methodisch besseren Studie verabreichte man eine Dosis von 42 bis 48 Gy in drei bis fünf Fraktionen an aufeinanderfolgenden Tagen bis zur 67-prozentigen Isodose, die das geplante Zielvolumen abdeckte (Brutto-Tumorvolumen erweitert um 0 bis 3 mm). In der Studie mit hohem Verzerrungsrisiko wurde für periphere Tumore eine Dosis von 48 Gy in vier Fraktionen und für zentralere Tumore in Gefäßnähe eine höhere Dosis von 60 Gy in acht Fraktionen gewählt. Ein Sicherheitsabstand von 5 bis 8 mm wurde beim Zielvolumen einberechnet.

Rezidiv nach zwei bis fünf Jahren

Zwei Studien mit 147 PatientInnen untersuchten die Rezidivrate zwei bis fünf Jahre nach dem Eingriff. Die Zahl der Ereignisse war zu gering, um eventuell vorhandene Unterschiede festzustellen. In beiden Studien war die Rezidivrate nach drei bis fünf Jahren ähnlich (1, 3), ohne statistisch signifikante Unterschiede zwischen den beiden Gruppen (Tabelle 1). Die absolute Zahl an Ereignissen wurde in der Studie mit höherem Verzerrungsrisiko berichtet (1). Nach zwei bis 3,5 Jahren trat in der Gruppe nach stereotaktischer Therapie bei 48,2 Prozent (13 von 27) ein Rezidiv auf und nach chirurgischer Resektion bei 46,3 Prozent (24 von 54; Relatives Risiko [RR]: 1,08; 95% Konfidenzintervall [KI]: 0,66–1,77).

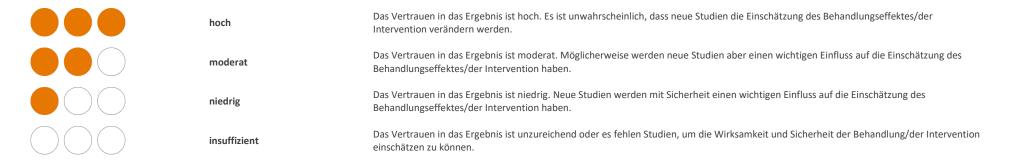
Progressionsfreies Überleben

Die zwei methodisch besseren Studien mit 274 PatientInnen untersuchten das Progressionsfreie Überleben (PFS) nach fünf Jahren. Wie viele PatientInnen tatsächlich überlebt hatten, wurde nicht berichtet. Die Überlebensraten ergaben sich aus Kaplan-Meier-Kurven. In keiner der beiden Studien war der Unterschied in Bezug auf das PFS statistisch signifikant. In der Größeren der beiden Studien mit 208 PatientInnen lag es fünf Jahre nach stereotaktischer Radiotherapie bei 49,0 Prozent und nach chirurgischer Exzision bei 47,3 Prozent (p=0,80).

Gesamtüberleben

Alle drei Studien untersuchten das Gesamtüberleben nach fünf Jahren (1-4). In den beiden methodisch besseren Studien mit insgesamt 274 PatientInnen konnte für das Gesamtüberleben nach fünf Jahren kein statistisch

signifikanter Unterschied festgestellt werden. In beiden Studien hatten 71 bis 74 Prozent der PatientInnen fünf Jahre nach Eingriff überlebt (p=0,67 bzw. 0,41; Tabelle 1). Angaben von genauen Ereignisraten fehlen.


Die Studie mit hohem Verzerrungsrisiko mit 81 PatientInnen zeigte einen statistisch signifikanten Vorteil für die chirurgische Resektion (Tabelle 1).

	Bias- Risiko	Ereignisse					
Studien		Stereotaktische Radiotherapie	Chirurgische Resektion	Relativ (95% KI)	Stereotaktische Radiotherapie (95% KI)	Stereotaktische Radiotherapie vs. chirurgische Resektion	Vertrauen in das Ergebnis
Rezidiv nach 2 bis 5	Jahren						
Nakano et al., 2018 (1) 1 retrospektive Kohortenstudie N=81	hoch	48,2% (13 von 27)	46,3% (24 von 54)	RR: 1,08; 95% KI: 0,66–1,77 ^a	4 mehr pro 100 (von 15 weniger bis 34 mehr)	Kein statistisch signifikanter Unterschied	b
Su et al., 2016 (3) 1 retrospektive Kohortenstudie N=66	niedrig	38,5% ^a N=33	45,5% ^a N=33	nicht berechenbar; p=0,80			
Progressionsfreies	Überleben	nach 5 Jahren		1		1	
Su et al., 2016 1 retrospektive Kohortenstudie N=66	niedrig	43,9% N=33	35,9% N=33	nicht berechenbar; p=0,95		Kein statistisch signifikanter	
Sun et al., 2020 1 retrospektive Kohortenstudie N=208	niedrig	49,0% N=104	47,3% N=104	nicht berechenbar; p=0,35		Unterschied	
Gesamtüberleben ı	Gesamtüberleben nach 5 Jahren						
Nakano et al., 2018 1 retrospektive Kohortenstudie N=81	hoch	47,8% Todesfälle: 33,3% (9 von 27)	75,2% N=54	nicht berechenbar; p=0,02		Vorteil chirurgische Resektion	b

	Bias- Risiko	Ereignisse					
Studien		Stereotaktische Radiotherapie	Chirurgische Resektion	Relativ (95% KI)	Stereotaktische Radiotherapie (95% KI)	Stereotaktische Radiotherapie vs. chirurgische Resektion	Vertrauen in das Ergebnis
Su et al., 2016 1 retrospektive	niedrig	74,3%	69,2%	nicht berechenbar; p=0,41			
Kohortenstudie N=66		N=33	N=33			Kein statistisch signifikanter	
Sun et al., 2020 1 retrospektive	niedrig	71,0%	70,7	nicht berechenbar; p=0,67		Unterschied	
Kohortenstudie N=208		N=104	N=104				

Tabelle 1: Stereotaktische Radiotherapie vs. chirurgische Resektion

Abkürzungen: KI: Konfidenzintervall, N: Anzahl der PatientInnen, RR: Relatives Risiko, vs.: versus

^a selbst berechnet, ^b wegen Ungenauigkeit und hohen Bias-Risikos von Nakano et al. herabgestuft

Suchstrategien

Search

Ergebnis vor Deduplikation (alle Studiendesigns): 1278

Ergebnis nach Deduplikation (alle Studiendesigns): 750

Ovid Medline, 28.06.2022

Ovid MEDLINE(R) ALL 1946 to June 27, 2022

	#	Searches	Results
A.Liver cancer	1	Carcinoma, Hepatocellular/	98492
	2	exp Cholangiocarcinoma/	11325
	3	Liver Neoplasms/	167197
	4	Bile Duct Neoplasms/	16823
	5	((hepatocellular or liver or hepatic) adj3 (neoplas* or cancer* or	172979
		carcino* or tumor? or tumour? or malignan*)).ti,ab,kf.	
	6	((intrahepatic or extrahepatic) adj3 (neoplas* or cancer* or carcino* or	4731
		tumor? or tumour? or malignan*)).ti,ab,kf.	
	7	Cholangiocarcinom*.ti,ab,kf.	16315
	8	(bile duct? adj3 (neoplas* or cancer* or carcino* or tumor? or tumour?	5722
		or malignan*)).ti,ab,kf.	
	9	or/1-8	258822
B.stereotactic	10	((stereotactic or stereotaxic) adj2 (radio* or radia* or RFA)).mp.	18224
radiation		[mp=title, abstract, original title, name of substance word, subject	
therapy		heading word, floating sub-heading word, keyword heading word,	
		organism supplementary concept word, protocol supplementary	
		concept word, rare disease supplementary concept word, unique	
		identifier, synonyms]	
	11	(SRFA or SRBT or SABR).ti,ab,kf.	1552
	12	CyberKnife*.mp.	1733
	13	TrueBeam*.mp.	550
	14	Axesse*.mp.	19
	15	Novalis*.mp.	317
	16	(Synergy*S or SynergyS*).mp.	65
	17	Trilogy*.mp.	680
	18	Hi-Art*.mp.	125
	19	or/10-18	20844

A+B	20	9 and 19	1364
C. surgery	21	Hepatectomy/	33132
	22	surgery.fs.	2177594
	23	(Hepatectom* or hemihepatectom*).ti,ab,kf,jw.	26347
	24	(lobectom* or segmentectom* or trisegmentectom* or	24888
		sectionectom*).ti,ab,kf,jw.	
	25	resect*.ti,ab,kf,jw.	398146
	26	(surg* or operativ* or chirug*).ti,ab,kf,jw.	3014021
	27	or/21-26	3936475
A+B+C	28	20 and 27	726
humans	29	limit 28 to "humans only (removes records about animals)"	724
language	30	(english or german).lg.	30400004
Total w/o filters	31	29 and 30	671
SR-Filter	32	Systematic Review.pt.	200256
	33	review.pt.	3007337
	34	(medline or medlars or embase or pubmed or cochrane or (scisearch or	461238
		psychinfo or psycinfo) or (psychlit or psyclit) or cinahl or ((hand adj2	
		search\$) or (manual\$ adj2 search\$)) or (electronic database\$ or	
		bibliographic database\$ or computeri?ed database\$ or online	
		database\$) or (pooling or pooled or mantel haenszel) or (peto or	
		dersimonian or der simonian or fixed effect)).tw,sh. or (retraction of	
		publication or retracted publication).pt.	
	35	33 and 34	195129
	36	meta-analysis.pt. or meta-analysis.sh. or (meta-analys\$ or meta analys\$	428748
		or metaanalys\$).tw,sh. or (systematic\$ adj5 review\$).tw,sh. or	
		(systematic\$ adj5 overview\$).tw,sh. or (quantitativ\$ adj5	
		review\$).tw,sh. or (quantitativ\$ adj5 overview\$).tw,sh. or (quantitativ\$	
		adj5 synthesis\$).tw,sh. or (methodologic\$ adj5 review\$).tw,sh. or	
		(methodologic\$ adj5 overview\$).tw,sh. or (integrative research review\$	
		or research integration).tw.	
	37	32 or 35 or 36	509191
SR-Results	38	31 and 37	24
RCT-Filter	39	exp randomized controlled trial/ or (random* or placebo).mp.	1632995
RCT-Results	40	31 and 39	52
cNRS-Filter	41	exp cohort studies/ or exp epidemiologic studies/ or exp clinical trial/ or	6323338
		exp evaluation studies as topic/ or exp statistics as topic/	
	42	((control and (study or group*)) or (time and factors) or cohort or	8175871
		program or comparative stud* or evaluation studies or survey* or	
		follow-up* or ci).mp.	
	43	41 or 42	10788765

	44	(animals/ not humans/) or comment/ or editorial/ or exp review/ or	9873022
		meta analysis/ or consensus/ or exp guideline/ or hi.fs. or case	
		report.mp.	
	45	43 not 44	8395171
cNRS-Results	46	31 and 45	362
All except case	47	case reports/ or (case? not control).ti,kf.	2760210
reports			
	48	31 not 47	602
Total	49	38 or 40 or 46 or 48	618

Cochrane Library, 28.06.2022

Cochrane Database of Systematic Reviews Issue 6 of 12, June 2022

Cochrane Central Register of Controlled Trials Issue 6 of 12, June 2022

ID	Search	Hits
#1	[mh ^"Carcinoma, Hepatocellular"]	1986
#2	[mh Cholangiocarcinoma]	253
#3	[mh ^"Liver Neoplasms"]	2623
#4	[mh ^"Bile Duct Neoplasms"]	190
#5	((hepatocellular:ti,ab,kw OR liver:ti,ab,kw OR hepatic:ti,ab,kw) NEAR/3 (neoplas*:ti,ab,kw	9339
	OR cancer*:ti,ab,kw OR carcino*:ti,ab,kw OR tumor?:ti,ab,kw OR tumour?:ti,ab,kw OR	
	malignan*:ti,ab,kw))	
#6	((intrahepatic:ti,ab,kw OR extrahepatic:ti,ab,kw) NEAR/3 (neoplas*:ti,ab,kw OR	351
	cancer*:ti,ab,kw OR carcino*:ti,ab,kw OR tumor?:ti,ab,kw OR tumour?:ti,ab,kw OR	
	malignan*:ti,ab,kw))	
#7	Cholangiocarcinom*:ti,ab,kw	810
#8	((bile NEXT duct?):ti,ab,kw NEAR/3 (neoplas*:ti,ab,kw OR cancer*:ti,ab,kw OR	1016
	carcino*:ti,ab,kw OR tumor?:ti,ab,kw OR tumour?:ti,ab,kw OR malignan*:ti,ab,kw))	
#9	{or #1-#8}	10437
#10	((stereotactic:ti,ab,kw OR stereotaxic:ti,ab,kw) NEAR/2 (radio*:ti,ab,kw OR radia*:ti,ab,kw	1619
	OR RFA:ti,ab,kw))	
#11	(SRFA:ti,ab,kw OR SRBT:ti,ab,kw OR SABR:ti,ab,kw)	238
#12	CyberKnife*:ti,ab,kw	71
#13	TrueBeam*:ti,ab,kw	19
#14	Axesse*:ti,ab,kw	0
#15	Novalis*:ti,ab,kw	9
#16	(Synergy*S:ti,ab,kw OR SynergyS*:ti,ab,kw)	12
#17	Trilogy*:ti,ab,kw	105

#18	Hi-Art*:ti,ab,kw	4
#19	{or #10-#18}	1825
#20	#9 and #19	152
#21	#20 in Cochrane Reviews, Cochrane Protocols	0
#22	(clinicaltrials or trialsearch or ANZCTR or ensaiosclinicos or chictr or cris or ctri or	402473
	registroclinico or clinicaltrialsregister or DRKS or IRCT or rctportal or JapicCTI or JMACCT or	
	jRCT or JPRN or UMIN or trialregister or PACTR or REPEC or SLCTR):so	
#23	conference abstract:pt or abstract:so	192773
#24	((language next (afr or ara or aze or bos or bul or car or cat or chi or cze or dan or dut or es	84380
	or est or fin or fre or gre or heb or hrv or hun or ice or ira or ita or jpn or ko or kor or lit or	
	nor or peo or per or pol or por or pt or rom or rum or rus or slo or slv or spa or srp or swe or	
	tha or tur or ukr or urd or uzb)) not (language near/2 (en or eng or english or ger or german	
	or mul or unknown)))	
#25	#20 not (#22 or #23 or #24) in Trials	42

Epistemonikos, 28.06.2022

Search	Results
(((liver OR hepatocellular OR "bile duct" OR "bile ducts") AND (neoplas* OR cancer* OR carcino*	114
OR tumor* OR tumour* OR malignan*)) OR Cholangiocarcinom*) AND (((stereotactic OR	
stereotaxic) AND (radio* OR radia*)) OR SRFA OR SRBT OR SABR)	
Filter: Systematic Review	52

Pubmed Similar Articles (based on the first 100 linked references for each article) 28.06.2022

Search	Query	Results
number		
1	29423737	1
2	Similar articles for PMID: 29423737	85
3	#2 NOT ("Animals"[Mesh] NOT "Humans"[Mesh])	85
4	#3 AND ("english"[Language] OR "german"[Language])	80
5	#4 AND systematic[sb]	1
6	#4 AND (randomized controlled trial[Publication Type] OR (random*[Title/Abstract]	0
	AND controlled[Title/Abstract] AND trial[Title/Abstract]))	
7	#4 AND (cohort[all] OR (control[all] AND study[all]) OR (control[tw] AND group*[tw])	64
	OR epidemiologic studies[mh] OR program[tw] OR clinical trial[pt] OR comparative	
	stud*[all] OR evaluation studies[all] OR statistics as topic[mh] OR survey*[tw] OR	
	follow-up*[all] OR time factors[all] OR ci[tw]) NOT ((animals[mh:noexp] NOT	

	humans[mh:noexp]) OR comment[pt] OR editorial[pt] OR review[pt] OR meta	
	analysis[pt] OR case report[tw] OR consensus[mh] OR guideline[pt] OR history[sh])	
8	#4 NOT ("Case Reports" [Publication Type] OR (case[ti] NOT control[ti]))	79
9	#5 OR #6 OR #7 OR #8	80

Referenzen

- 1. Nakano R, Ohira M, Kobayashi T, Ide K, Tahara H, Kuroda S, et al. Hepatectomy versus stereotactic body radiotherapy for primary early hepatocellular carcinoma: A propensity-matched analysis in a single institution. Surgery. 2018;164(2):219-26.
- 2. Nakano R, Ohira M, Kobayashi T, Ide K, Tahara H, Kuroda S, et al. Reply: Hepatectomy versus stereotactic body radiotherapy for primary early hepatocellular carcinoma: A propensity matched analysis in a single institution. Surgery. 2019;165(5):1054-7.
- 3. Su TS, Liang P, Liang J, Lu HZ, Jiang HY, Cheng T, et al. Long-Term Survival Analysis of Stereotactic Ablative Radiotherapy Versus Liver Resection for Small Hepatocellular Carcinoma. Int J Radiat Oncol Biol Phys. 2017;98(3):639-46.
- 4. Sun J, Wang Q, Hong ZX, Li WG, He WP, Zhang T, et al. Stereotactic body radiotherapy versus hepatic resection for hepatocellular carcinoma (<= 5 cm): a propensity score analysis. Hepatol Int. 2020;14(5):788-97.
- 5. Localized hepatocellular carcinoma: Liver-directed therapies for nonsurgical candidates not eligible for local thermal ablation: UpToDate; 2022 [Available from: www.uptodate.com.
- 6. Qichun Wei M, PhD Stereotactic Body Radiotherapy and Surgery for Early-stage Hepatocellular Carcinoma 2018 [Available from:

https://clinicaltrials.gov/ct2/show/study/NCT03609151

Ein Projekt von

Das Evidenzbasierte Ärzteinformationszentrum ist ein Projekt von Cochrane Österreich am **Department für Evidenzbasierte Medizin und Evaluation** der Universität für Weiterbildung Krems. Rapid Reviews für niederösterreichische SpitalsärztInnen werden von der niederösterreichischen Landesgesundheitsagentur finanziert.

Disclaimer

Dieses Dokument wurde vom EbM Ärzteinformationszentrum des Departments für Evidenzbasierte Medizin und Evaluation der Universität für Weiterbildung Krems – basierend auf der Anfrage eines praktizierenden Arztes/einer praktizierenden Ärztin – verfasst.

Das Dokument spiegelt die Evidenzlage zu einem medizinischen Thema zum Zeitpunkt der Literatursuche wider. Das EbM Ärzteinformationszentrum übernimmt keine Verantwortung für individuelle PatientInnentherapien.