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Abstract

Visual characteristics are among the most important features for characterizing the pheno-

type of biological organisms. Color and geometric properties define population phenotype

and allow assessing diversity and adaptation to environmental conditions. To analyze geo-

metric properties classical morphometrics relies on biologically relevant landmarks which

are manually assigned to digital images. Assigning landmarks is tedious and error prone.

Predefined landmarks may in addition miss out on information which is not obvious to the

human eye. The machine learning (ML) community has recently proposed new data analy-

sis methods which by uncovering subtle features in images obtain excellent predictive accu-

racy. Scientific credibility demands however that results are interpretable and hence to

mitigate the black-box nature of ML methods. To overcome the black-box nature of ML we

apply complementary methods and investigate internal representations with saliency maps

to reliably identify location specific characteristics in images of Nile tilapia populations. Ana-

lyzing fish images which were sampled from six Ethiopian lakes reveals that deep learning

improves on a conventional morphometric analysis in predictive performance. A critical

assessment of established saliency maps with a novel significance test reveals however

that the improvement is aided by artifacts which have no biological interpretation. More inter-

pretable results are obtained by a Bayesian approach which allows us to identify genuine

Nile tilapia body features which differ in dependence of the animals habitat. We find that

automatically inferred Nile tilapia body features corroborate and expand the results of a

landmark based analysis that the anterior dorsum, the fish belly, the posterior dorsal region

and the caudal fin show signs of adaptation to the fish habitat. We may thus conclude that

Nile tilapia show habitat specific morphotypes and that a ML analysis allows inferring novel

biological knowledge in a reproducible manner.
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Introduction

Visual analysis and use of anatomic features has a long tradition in biology [1–3]. Visual fea-

tures which are distinct for groups of specimen images provide important information for bio-

logical systematics, paleontology, evolutionary, developmental and conservation biology.

Classical morphology uses landmarks to define phenotype and modern morphometrics [4] to

remove confounding factors that could otherwise impede drawing robust conclusions. Mor-

phometrics is well established [5, 6] and of particular importance in fish biology [7–10]. Fish

morphology allows to discriminate genera, species, populations, and even individuals [11].

Morphology allows studying the response of shape to environmental and ecological factors

such as trophic behavior [12]. Morphology can furthermore quantify relationships between

different species [13, 14] and adaptation of body shape to environmental change [15, 16]. Fish

morphology is also known to be an expression of ecological interactions [17].

Landmarks in morphometrics are based on predefined biological knowledge [4, 18]. The

advantage of landmarks coming with a biological justification is however paired with the dis-

advantage of investigations relying on predetermined features. The discovery of novel features

of fish anatomy that could be more informative for the question at hand is impossible. Land-

mark based analyses have the additional disadvantage of being quite laborious. Every sample

needs a careful characterization by placing landmarks in images before further analyses are

possible. Attempts to replace landmarks with automatically derived sample characteristics are

thus on the agenda of many scientific laboratories. Using Machine learning (ML) for this task

depends on a collection of labeled images which are used as training data. To identify location

specific characteristics in Nile tilapia morphology we will simultaneously learn to distinguish

sample categories and assess the relevance of input features.

Classification can be approached with fully generative models [19, 20] or by diagnostic

models which express class labels or their probabilities as function of input features [21]. An

intermediate approach between fully generative and diagnostic classification was recently pro-

posed in [22] where transitions between prototypical samples are represented as one dimen-

sional manifolds and classification assesses test cases on the basis of calculated distances.

Approaches like [19, 20, 22] which represent input data density or aspects thereof are advanta-

geous if missing data is a problem or in situations which require detection of outliers. To iden-

tify visual features in specimen images which are important to discriminate between labels this

work relies on established practice and combines diagnostic models with an identification of

feature relevance [45]. Recent success of deep learning [23] where in particular convolutional

neuronal networks (CNNs) dominated all recent image classification contests since 2012 sug-

gests to consider methods like [24] to analyze the Nile tilapia images. Deep learning refers to a

class of methods which descend from neural networks, where many layers of neurons are

concatenated. CNNs [25, 26] use deep architectures which are very useful for image process-

ing. In a biological context CNNs have been used to classify plants [27, 28] and fish [29–34].

While technical aspects like good classification accuracy are a necessary prerequisite, infer-

ring reproducible biological knowledge depends in addition on critical assessments of how we

arrive at predictions. The latter consideration is of particular importance when relying on

CNNs and other powerful approaches. Subtle dependencies between input and output vari-

ables inform predictions irrespective of whether extracted features represent meaningful biol-

ogy or might be caused by artifacts which show an unfortunate confounding with the analysis

goal. This paper hypothesizes that a robust and transparency enforcing machine learning

based analysis will help to draw reproducible conclusions. We evaluate this hypothesis

against an alternative approach which relies on a naïve analysis with CNNs. Striving for robust

conclusions is motivated by the no free lunch theorems [35] which prove that the unknown
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characteristics of a data set are linked with how well different approaches cope with an analysis

challenge. Looking for insight about how predictions come about is rooted in recent observa-

tions (e.g. [36]) that excellent predictive performance may be aided by artifacts in the data

which are correlated with the class label. According to [37] it is thus imperative to safeguard

that predictions are a result of biologically plausible features. By highlighting image regions

which carry discriminatory information of a sample, transparency enforcing mechanisms will

also help to elucidate which Nile tilapia body characteristics are location specific.

The data which we use to evaluate our hypothesis consists of 209 Nile tilapia images which

were sampled from the six different Ethiopian lakes which we list in Table 1.

By learning to predict the known origin of fish images, data analysis will extract image char-

acteristics which are specific for every lake. If we may assume that the extracted features repre-

sent valid aspects of fish morphology, good predictive accuracy will facilitate investigations

about specialization and population differentiation. Such analysis is in principle suitable to

relate species [13, 14] or to evaluate intraspecific variation [15, 16]. To obtain robust and

reproducible verdicts about variation of Nile tilapia morphology we analyze this data with

complementary data analysis methods.

• ML based feature extraction with CNNs [25, 26] and Bayesian Gaussian process latent vari-

able models (GP-LVM) [38] are compared against manually assigned landmarks of fish mor-

phology which underwent a generalized Procrustes analysis (GPA) [39–41].

• To infer classifiers which predict the origin of samples we applied Gaussian process classifi-

ers (GPC) [42, 43] and a Bayesian multi-layer perceptron (HMC-MLP) which was inferred

with hybrid Monte Carlo sampling [44, 45]. Since CNNs are classifiers with built in feature

extractors, CNNs constitute a third approach which classifies fish images by sample origin.

• We rely on generalization accuracy (Acc), mutual information (MI) and McNemars signifi-

cance test (Sig) to obtain complementary assessments of classification performance [46]. For

judging reproducibility and to guarantee unbiased assessments we repeat a ten fold cross

testing procedure [42, 46, 47] ten times on reshuffled data sets.

• To assess which image features aid CNN predictions, we apply backward propagation of rel-

evance (LPR) [48] and Grad-CAM [49] to individual samples. LPR and Grad-CAM based

saliency maps are used to identify regions in sample images which are influential for the cal-

culated predictions. GP-LVM provides on the scale of the entire data set insight into how dif-

ferent image regions contribute to the learned representation. Using automatic relevance

determination (ARD) during GPC and HMC-MLP inference fosters identifying Nile tilapia

body characteristics that are specific to the animals habitat. To mitigate the human factor in

Table 1. Six Ethiopian lakes which constitute the origin of 209 Nile tilapia specimen.

Lake name Coordinates Elevation [m] Area [km2] Nr. samples

Chamo N5˚500 E37˚3300 1110 317 36

Hawassa N7˚300 E38˚2600 1686 129 38

Koka N8˚23031.1 E39˚4036.45 1595 180 31

Langano N7˚3700 E38˚4600 1585 230 26

Tana N12˚100 E37˚17031 1788 3060 38

Ziway N8˚003 E38˚49016 1636 440 40

This table lists the six Ethiopian lakes which were visited for sample collection. The lakes are characterized by geographical coordinates, elevation above sea level, area

and the number of Nile tilapia sample images which were collected at every site.

https://doi.org/10.1371/journal.pone.0249593.t001
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interpreting saliency maps we devise a novel statistical test and use a p-value cutoff of 0.001

to mark important image regions in a reproducible manner.

The remaining part of the paper provides a detailed description of a Nile tilapia data set and

the data analysis pipelines which we illustrate in Fig 1. We use the term pipeline to denote a

cascade of compatible data analysis stages. The emphasis of the rather involved data analysis

strategy is to obtain reproducible conclusions about habitat specific characteristics in Nile tila-

pia images which may have some adaptation value. The results section applies all analysis

methods in practice. We provide an assessment of different analysis methods, investigate

robustness of preferences and provide insight into inferred models. Careful model checking

identifies and removes technical artifacts and provides reproducible biological conclusions

that Nile tilapia morphology shows population specific variation. The paper closes with a con-

clusion where we evaluate our hypothesis and provide a short guideline on how to apply ML to

arrive at biologically meaningful findings.

Materials and methods

Evaluating whether Nile tilapia has population specific morphotypes in a biologically robust

manner depends on a comprehensively annotated data set and the elaborate data analysis

which we discuss in the following subsections of the paper.

Fig 1. Data analysis of Nile tilapia images. The objective of our approach is to provide robust conclusions by randomly reshuffling the original data

and repeating analysis ten times. The input features considered in our analysis are 1) established landmarks of fish morphology which underwent a

generalized Procrustes analysis (GPA); 2) Gaussian process latent variable representations of fish images (GP-LVM) and 3) features extracted by deep

convolutional neural networks (CNN). Nile tilapia origin is classified from GPA and selected GP-LVM features with Gaussian process classifiers (GPC)

and Bayesian multi layer perceptrons which were inferred with a hybrid Monte Carlo algorithm (MLP). Combining feature extraction and

classification, the CNN is directly applied to Nile tilapia images. Unbiased predictions were obtained with ten fold cross testing and assessed by

generalization accuracy (Acc) and mutual information between features and labels (MI). McNemars test was used to assess the differences between the

least performing classifier and all improved results for statistical significance (Sig). ARD level based feature ranks allow us to reason which visual

features of Nile tilapia adapt to habitat.

https://doi.org/10.1371/journal.pone.0249593.g001
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Data

Ethical and legal considerations. Nile tilapia is not a protected species, but rather fished

commercially. Sampling was conducted in collaboration with respective local authorities and

therefore no special permission was required. All Nile tilapia samples which went into this

investigation where harvested by local fishermen and used for commercial purposes. In all

cases, the fish were already dead when obtained from the fishermen. For obtaining the Nile

tilapia images a special treatment of the animals was therefore not required.

Data collection. To provide conclusions which are relevant for typical field work, the data

which we consider in this study consists of 209 Nile tilapia fish images that were collected at

six different Ethiopian lakes under natural conditions. An overview of the locations and the

number of samples is found in Table 1. To maintain identical orientation all Nile tilapia sam-

ples were photographed from the left side with a Nikon D5200 digital camera. Images were

taken with a 18mm lens at constant focal length of 30cm and labeled according to the lake of

origin. To compare purely ML based analysis strategies with classical morphometrics, all fish

images were annotated with the 14 two dimensional landmarks that were previously used by

[50]. The landmarks are depicted in Fig 2 and further described in Table 2. The data which we

use in this study consists thus of 209 images and a 209 × 28 dimensional matrix with landmark

coordinates. Images and landmarks were processed and subsequently used as input to infer

classifiers which learn to predict the respective lake of origin. We are however not interested in

the predictions per se. The objective of a biologically meaningful analysis lies in 1) identifying

whether and how much information Nile tilapia body characteristics contain about the lake of

origin and 2) an identification of Nile tilapia body characteristics which allow to distinguish

the origin of samples. To deduce this information we apply the analysis pipelines which are

shown in Fig 1.

Data analysis

Our decision to apply complementary methods is motivated by established knowledge that

models have an impact on analysis results [35, 51]. The ability of modern ML methods to

Fig 2. Landmark positions on an image of a Nile tilapia fish. A classical morphometrics analysis of Ethiopian Nile tilapia is based on

the 14 landmark positions which we illustrate in this image of a Nile tilapia fish.

https://doi.org/10.1371/journal.pone.0249593.g002
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discover subtle features in data may impede inferring reproducible biological knowledge, if

technical artifacts happen to contain information about class labels [36]. To approach both

challenges we apply the data analysis pipeline in Fig 1. The coordinates of the 14 landmarks in

Table 2 are transformed by a generalized Procrustes analysis (GPA) [41] to yield GPA-shape

features. The Nile tilapia images are also used directly as inputs of a Gaussian process latent

variable model (GP-LVM) [38] and for analysis with convolutional neural networks (CNNs)

[25, 26].

To prepare analysis all images are converted to gray scale and resized such that all fish have

the same length. An important consideration in image processing is deciding on a spatial reso-

lution which is adequate for the task. While undersized resolutions bear the risk of information

loss, too large resolution will pick up noise which will again deteriorate performance. We

decided to follow the choice reported in [24] for their CNN implementation which ranked

highly successful in the ImageNet 2014 challenge and converted all Nile tilapia images to a res-

olution of 224 × 224 pixels. The added value of using 224 × 224 pixel images is that the applied

CNN can be initialized with the pre-trained ImageNet [52] model of VGG-16 which comes

with Keras [53, 54]. Nile tilapia images at a resolution of 224 × 224 pixels are also the input to

feature extraction with GP-LVM. To quantify model uncertainty the analysis pipeline in Fig 1

reshuffles the 209 Nile tilapia samples and repeats all analyses ten times. To obtain paired pre-

dictions, all data analysis pipelines use the fish specimen in the same order.

The proposed analysis classifies GPA-shape and GP-LVM features with Gaussian process

classifiers [42, 43] (GPC) and a multi layer perceptron which we infer with R. Neals Hybrid

Monte Carlo approach [44, 45] (HMC-MLP). Both classifiers allow for automatic relevance

determination (ARD) and thus to assess the importance of input features. Providing perfor-

mance assessments and feature rank metrics allows us to infer whether Nile tilapia adapts to hab-

itat and which body parts change. CNNs [25, 26] map images directly to probabilities of class

and constitute a fifth approach for classifying Nile Tilapia with respect to lake of origin. Ten fold

cross testing [47] provides unbiased performance assessments on all reshuffled data sets.

Table 2. Characterization of the 14 landmark positions in Fig 2.

Nr. Landmark name acronym

1 Upper tip of snout UTP

2 Center of eye EYE

3 Anterior insertion of dorsal fin AOD

4 Posterior insertion of dorsal fin POD

5 Dorsal insertion of caudal fin DIC

6 Ventral insertion of caudal fin VOC

7 Posterior insertion of anal fin PIA

8 Dorsal base of pectoral fin BPF

9 Most posterior edge of operculum PEO

10 Ventral edge of operculum VEO

11 Anterior insertion of anal fin AOA

12 Anterior insertion of pelvic fin AOP

13 Halfway between dorsal and ventral insertion of caudal fin HCF

14 Posterior end of mouth EMO

This table relates the landmark numbering of Fig 2 to a textual description and an acronym which we use throughout

the paper for referring to different landmarks. These landmarks are used to characterize 209 Nile tilapia specimen for

a classical morphometrics analysis.

https://doi.org/10.1371/journal.pone.0249593.t002
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Complementary views at predictive performance are obtained by calculating generaliza-

tion accuracy (Acc), mutual information between inputs and outputs (MI) and pairwise

McNemar significance levels (Sig) when comparing the least performing classifier against all

other predictors. Training on reshuffled data will lead to model inference finding different

local optima and hence capture the variation in performance of different pipelines. The vari-

ability in Acc, MI and Sig which results from data reshuffling is visualized as box plots. Ran-

domization also captures the uncertainty about feature relevance for predicting the origin of

Nile tilapia samples. The resulting rank uncertainty is visualized as pie charts where the fea-

ture distribution at leading rank positions is represented as pie segments. While large gener-

alization accuracy and mutual information of image based predictions would hint lake

specific phenotypes, the biological relevance of such findings is still far fetched. To draw

reproducible conclusions, we have to investigate the nature of patterns and image regions

which provide information about the lake of origin. The trained CNNs are to this end ana-

lyzed with backward propagation of relevance [48] and Grad-CAM [49]. The generative

nature of GP-LVM allows for a direct mapping of discriminatory features to image space.

After this broad overview of the proposed data analysis we will discuss important methodo-

logical details in the subsequent sections.

Landmarks and GPA. To remove effects from landmarks like differences in sample size

or orientation, GPA was performed using function procGPA() from the R package shapes,
[41]. To discuss GPA briefly we follow [39–41] and represent landmark m 2 [1, M] of Nile tila-

pia sample n 2 [1, N] as two dimensional column vector cn;m ¼ ½xn;m; ynm �
T
. All landmarks of

sample n can thus be represented as [2 ×M] dimensional matrix Yn = (ψn,1, . . ., ψn,M). The

goal of the GPA is to convert all N initial configurations Yn to shapes. GPA adjusts to this end

all configurations to obtain identical location and scale. A subsequent correction for rotational

variation completes GPA. GPA is thus a three step procedure.

1. The initial configurations Yn are translated such that all sample centroids c(Yn) = 1/M∑m
ψn,m coincide with the origin of the coordinate system.

2. The translated configurations are rescaled such that configuration Yn gets a unit

centroid size. Using IM as M-dimensional identity matrix the centroid size is defined as

SðYnÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

traceðYT
nC

T
CYnÞ

q

where C ¼ IM � 1=M1M1
T
M denotes the centering matrix.

3. The final GPA shapes, Zn, are obtained by rotation such that the agreement between Zn and

the mean shape μZ = 1/N∑n Zn is optimized. Optimization minimizes to this end for every

shape trace(μZZnΓn) w.r.t. Γn 2 Sr(R2) where Sr(R2) denotes the set of all rotation matrices

of the 2 dimensional Euclidean space.

The resulting set of shapes Z = [Z1, .., ZN] characterize Nile tilapia landmarks invariant to

differences in location, size and angular rotation of the fish in the image. To fit to the analysis

which is shown in Fig 1 we convert Z to a [N × 2M] dimensional matrix X where column

X[:, 2m − 1] denotes all x and column X[:, 2m] all y coordinates of the m-th GPA-shape

feature.

Gaussian process latent variable models. To compare the landmark based analysis with

analyses which rely entirely on ML methods, we extract features from Nile tilapia images with

Gaussian process latent variable models (GP-LVM) [55, 56]. GP-LVM is an unsupervised ML

method which represents an [N × D] dimensional data matrix Y by a [N × L] dimensional

matrix X and a probabilistic model p(Y|X, θ). We use N to denote the number of samples, D
as dimension in observation space, L� D as latent variable dimension and θ to denote the

GP-LVM parameters.
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GP-LVM models the D columns of Y, yd, independently as Gaussian process. We will to

this end adopt the notation

pðydjf dÞ ¼ ð2pÞ
� N=2

l
N=2 exp ð� 0:5lðyd � f dÞ

TIðyd � f dÞÞ;

pðf djX; θÞ ¼ ð2pÞ
� N

2 jK f ;f ðX; θÞj
� 1

2 exp �
1

2
f TdK f ;f ðX; θÞ

� 1f d

� �

and thus

pðYjX; θÞ ¼ ð2pÞ
� ND

2 jK f ;f ðX; θÞ þ l
� 1Ij�

D
2

�
YD

d¼1

exp ð� 0:5yT
d ðK f ;f ðX; θÞ þ l

� 1IÞ� 1ydÞ

ð1Þ

All data columns, yd, are hence considered observations of a zero mean Gaussian process

with an additive Gaussian noise term with variance λ−1. The vector fd in Eq (1) represents the

noiseless signal in column d. The Gaussian process (GP) p(fd|X) is governed by an [N × N]

dimensional covariance matrix, Kf,f(X, θ). The covariance matrix is a deterministic function of

X and θ and in GP-LVM assumed to be identical for all data columns. GP-LVM learns thus to

represent all columns of Y with the same latent variables X. GP-LVM is parameterized via a

covariance function Kf,f[n, ν](X, θ) = k(X[n,:], X[ν,:], θ) where X[n,:] and X[ν,:] denote rows n
and ν of X. The vector θ represents the parameters of the covariance function. Due to the large

number of parameters and many local optima, determining optimal values for X and θ by

maximizing the likelihood p(Y|X, θ) is cumbersome and has a tendency to overfit [57, 58].

Current applications of GP-LVM rely thus on a later extension by [38] which combines

variational ideas and sparse GPs [58, 59] to reduce the number of parameters considerably.

Denoting the latent representation of sample n as X[n,:], [38] acknowledge that X is a [N × L]

matrix of random variables and specify a factorizing prior pðXÞ ¼
QN

n¼1
N ðX½n; :�j0; IÞ.

Approximating the true posterior p(Y|X) as QðXÞ ¼
QN

n¼1
N ðX½n; :�jμn;SnÞ allows the authors

of [38] to formulate a variational lower bound F(Q)< log(p(Y))

FðQÞ ¼
Z

X
QðXÞ log

pðXÞpðYjXÞ
QðXÞ

� �

dX

¼ ~FðQÞ � KLðQðXÞjjpðXÞÞ:
ð2Þ

While the Kullback Leibler (KL) divergence KL(Q(X)||p(X) is analytically tractable, nonlin-

ear interactions between X and Y require approximating ~FðQÞ further. The suggestion in [38]

to use a sparse GP for p(fd|X) is achieved by augmenting the model for every dimension d by

M< N inducing variables ud and a common [M × L] dimensional matrix of inducing inputs

Z. Using a squared exponential [43] as covariance function

kðx; x0Þ ¼ s2
f exp � 0:5

XL

l¼1

alðxl � x0lÞ
2

 !

ð3Þ

allows [38] to derive an analytic lower bound for ~FðQÞ. Eq (3) uses θ ¼ ½s2
f ; a1; ::; aL� as param-

eters of the covariance function. While αl have an interpretation as inverse squared length

scale in the latent dimension l, s2
f represents a signal amplitude. The significance of introduc-

ing a sparse GP and a lower bound for ~FðQÞ is that [38] obtain an analytic expression

FQðZ; ½μn;Sn8n�; θÞ which bounds log(p(Y)) from below and allows for maximization w.r.t.

the variational parameters Z, [μn, Sn8n] and the parameters of the covariance function θ.
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The GP-LVM implementation by [38] requires in addition to chose between the determin-
istic training conditional (DTC) or the fully independent training conditional (FITC) parametri-

zation of sparse GPs [60]. The maximum value of maxZ;½mn ;Sn8n�;θ
ðFQÞ depends furthermore on

the number of inducing values M and on the dimension of the latent space L. For applying

GP-LVM we use the BayesianGPLVM model of the Python GPy package [61], induce sparsity

by DTC and initialize the modes of Q(X) by the first L coordinates in principal component

space. Except for the number of iterations which we set to 10000, optimization uses Baye-
sianGPLVM.optimize with default parameters. This choice will optimize the lower bound

of FQ with respect to the variational parameters Z and [μn, Sn8n] by using the L-BFGS-B

optimizer of Python SciPy with default settings and iterations set to 10000. To obtain a reason-

able number of inducing variables we set L to 36 and increase M until maxðFQÞ reaches a

plateau. The resulting M is then fixed and we determine the optimal latent dimension as

L̂ ¼ argmaxLðmaxðFQÞÞ. The optimized Bayesian GP-LVM represents the 209 Nile tilapia

images as a product of Gaussian distributions, QðXÞ ¼
QN

n¼1
NðX½n; :�jμ̂n; ŜnÞ. GP-LVM is

meant to extract features from Nile tilapia images which allow predicting the lake of origin of

the fish images. GP-LVM will however target image features irrespective of their biological rel-

evance [36]. We refrain therefore from the proposition in [38, 59] to use GP-LVM as class con-

ditional densities in a fully generative classifier. Instead we propose to use selected dimensions

of the expectation E[X]Q(X) as inputs for diagnostic classifiers after we convinced ourselves that

the features represent genuine Nile tilapia morphology. As is pointed out by [43], we may use

the size of the inverse length scales αl to order the L dimensions of X by feature relevance. To

elucidate the correspondence between latent dimensions and features in the Nile tilapia images

we make use of the generative nature of GP-LVM. When fixing all but the l-th dimension of X
to the respective sample mean, projecting the variability of dimension l with p(Y|X) to image

coordinates illustrates how pixel variation in different image regions manifests itself in

GP-LVM dimension l. Visualizations of the resulting saliency maps allow us to differentiate

between latent GP-LVM dimensions which represent genuine Nile tilapia morphology and

GP-LVM dimensions which are influenced by technical artifacts.

Predictive classification. To obtain robust analysis results we consider two classical

machine learning methods to infer classifiers which are trained to predict the lake of origin

when presented with GP-LVM or GPA transformed landmarks. To include a competitive

approach which is based on classical neural networks, we use the hybrid Monte Carlo imple-

mentation for multi layer perceptrons (HMC-MLP) by R. Neal [44, 45]. As a second classical

machine learning method we apply a Gaussian process classifier (GPC) [42, 43]. Using C = 6

as the number of lakes, predicting the lake of origin of Nile tilapia samples is a 1-of-C classifica-

tion problem. A discrete column vector y denotes in this setting the lake of origin of every Nile

tilapia sample. To obtain a measure of uncertainty when classifying test cases, the proposed

approaches learn to predict the posterior probabilities of class. In preparation of model fitting

the labels y have to be coded in a zero-one fashion such that Y is a [N × C] dimensional matrix

of zeros, except for column y[n] in row n which we set to one. Denoting the classification

inputs of one sample as L-dimensional vector x, the probabilities, P(y|x), of 1-of-C problems

are for HMC-MLPs obtained with the softmax transformation [42]. An implementation of

HMC-MLP inference is provided by R. Neal at https://www.cs.toronto.edu/~radford/fbm.

software.html.

Polychotomous 1-of-C classification with GPCs is most often approached with C binary clas-

sifiers. The model predicts in this case the zero-one coded Y matrix column wise by using a

logistic sigmoid [42] as target transformation. Denoting the L-inputs of sample n as xn = X[n,:]T,

a GPC defines a Gaussian process in some latent map f(xn). If we condition on all training
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samples sample, f(ξ) has for a novel input ξ a univariate Gaussian distribution. GPC predictions

of C binary class probabilities are obtained by integrating out f(ξ) from P(yc, f(ξ)|ξ). A subse-

quent normalization provides the 1-of-C probabilities as P y ¼ cjxð Þ ¼
Pðyc¼1jxÞPC

k¼1
Pðyk¼1jxÞ

. We apply

in our analysis the GPC which is provided in GPy [61], use expectation propagation [62] with

default parameters for inference and L-BGFS-B as optimizer.

GPC as well as HMC-MLP allow attenuating input features which do not aid classification.

R. Neal coined in [44] the term automatic relevance determination (ARD) to denote this

behavior. Introducing ARD in GPCs is a matter of using the squared exponential in Eq (3) as

covariance function. The inverse squared length scales [α1, .., αL] which are inferred during

inference can be used as ARD metric with larger values indicating more important inputs.

Allowing for ARD during HMC-MLP inference requires specifying a hierarchical prior which

governs the scale of a zero mean Gaussian prior over all input specific parameters. Our applica-

tion relies on a prior which in the limit of an infinite number of hidden units converges to a

Gaussian process. We consider separate ARD scales for input to hidden and input to output

parameters and otherwise follow the default suggestions in the documentation [44]. While the

number of inputs depends on whether we use GPA or GP-LVM features, all MLPs have 20

hidden units and six output units. The HMC simulations draw 2500 samples, discard the

first 25% as burn in and extract independent predictions and ARD relevance scales from the

remaining MCMC samples. Inference represents linear relevance, σl,1, and nonlinear rele-

vance, σl,2, for every dimension l separately. Since HMC-MLP ARD values are prior scales, we

suggest combining both relevance measure by summing squares, sl ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s2
l;1 þ s

2
l;2

p
. The same

aggregation allows to interpret the relevance metrics of both landmark coordinates together.

The αl length scales in the squared exponential covariance function have a nonlinear effect on

the covariance matrix of the Gaussian process. For combining GPC ARD metrics we suggest

therefore to minimize the difference between the inferred covariance matrix and an approxi-

mation which results from using for all respective input dimensions the combined inverse

length scales. To combine the inverse squared length scales [αl, .., αl+j] for input dimensions l
to l + j to one a

lþj
l value, we obtain the approximate optimum as

â
lþj
l ¼

X

n

ηT
nLηnη

T
n Iηn

 !

=
X

n

ðηT
n IηnÞ

2

 !

: ð4Þ

Eq (4) expresses the original length scales as diagonal matrix L = diag(αl, ..αl+j) and denotes

all samples of the corresponding input subsets as ηn. The ARD metrics which are obtained

from ten fold cross testing are averaged and used to rank input features.

Convolutional neural networks. Convolutional neuronal networks (CNN) were origi-

nally introduced in [25, 26] as optimal architecture for extracting information from images.

Renewed interest in CNNs was triggered by [63] and CNNs since then regularly scoring top

results in data analysis competitions. The CNN architecture which we apply for predicting the

lake of origin from Nile tilapia images is the Keras [53, 54, 64] implementation of the Con-

vNet-D (VGG-16) architecture in [24]. Motivated by the success of VGG-16 with this resolu-

tion, we decided to use gray scale images with 224 × 224 pixels as CNN input. To allow using

the pre-trained ImageNet [52] model of VGG-16 which expects three RGB channel images

with a 224 × 224 resolution as input, we replicate the same gray scales in all three channels.

Our CNN architecture, which we illustrate in Fig 3, follows largely the proposition in [24]. To

fit to our Nile tilapia data, we replaced however their fully connected layers by a flatten layer, a

dense layer with 1024 neurons, a dropout layer with a 50% dropout rate and a final dense layer

with six neurons and softmax transformation.

PLOS ONE Analysing Ethiopian Nile tilapia morphology with machine learning

PLOS ONE | https://doi.org/10.1371/journal.pone.0249593 April 15, 2021 10 / 30

https://doi.org/10.1371/journal.pone.0249593


Fig 3. Sketch of the CNN architecture we use for predicting the lake of origin from 224 gray scale Nile tilapia images. Our

architecture uses 16 layers. Except for the fully connected layers which use 1024 nodes and a 6 class softmax output layer, we

apply the Keras version of VGG-16 by [24] which is inferred on ImageNet data [52].

https://doi.org/10.1371/journal.pone.0249593.g003
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Albeit relying on a pre-trained CNN, additional adaptation to our data set is crucial to

reach good model performance. Satisfying results can be obtained with a procedure that was

proposed by [24]. Training optimizes cross entropy, uses 70 epochs, a batch size of 8, the

RMSprop optimizer with a learning rate of 10−4 and otherwise default settings. To achieve

invariance to location, scale and orientation differences we follow [65] and use data augmenta-

tion with the following parameters: rescale = 1/255, rotation_range = 20, width_shift_range =

0.2, height_shift_range = 0.2, horizontal_flip = True and fill_mode = ‘nearest’.

The strength of CNNs to extract very subtle features lead to excellent performance charac-

teristics which come however at the expense that the resulting models are complex and diffi-

cult to interpret. To avoid reporting results which are technically superior but result from the

inclusion of rogue features, recent publications [36, 37, 48, 66–69] accentuate the importance

of investigating how CNNs reach their decisions. We apply to this end the Grad-CAM [69]

implementation in [70] and the implementation of layer wise propagation of relevance (LPR)

[36, 37, 48] in [71]. Both approaches provide visual impressions about image regions which

are important for trained CNNs to arrive for a test case at the respective prediction.

Statistical assessments of saliency maps. LPR [48] and Grad-CAM [69] provide quanti-

tative assessments at pixel level about how different regions of a sample image contribute to

the calculated predictions. By mapping the variation of individual latent dimensions into

image space, GP-LVM provides comparable information for the entire data set. The LPR,

GRAD-CAM and GP-LVM derived spatial importance metrics are positive, usually illustrated

as saliency maps and interpreted manually. The decision whether a saliency map gives cause

for concern may thus depend on the person assessing the map. To improve the reproducibility

of determining image regions which are important for predicting the lake of origin of Nile tila-

pia samples, we suggest to assess the saliency maps with a statistical test.

To derive a test statistic a feature F which is represented by the convolution layers of

VGG-16 or by the latent space of GP-LVM is considered as a set of N neighboring pixels,

F ¼ ½ðxn; ZnÞ8n 2 ½1; ::;N��. The tuple (ξn, ηn) refers to the x and y coordinate of every pixel

which characterizes the feature F . Spatial characteristics of extracted features like local persis-

tence and sparsity is apparent in image processing literature (e.g. [54], chapter 5.4). Local

persistence of feature coordinates implies that every feature pixel, ðx; ZÞ 2 F , has a small

neighborhood �((ξ, η)) which contains other pixels which are also part of feature F . We may

express this observation as 9ðxn; ZnÞ 2 �ððx; ZÞÞjðx; ZÞ 2 F ^ ðxn; ZnÞ 2 F . Image regions

which are important for model predictions will thus be characterized as comparably dense

clusters of large LPR, GRAD-CAM or GP-LVM derived importance metric values. Such

saliency maps may be described as marked spatial point processes (e.g. [72] chapter 6.4) on

ðR2
� RþÞ where R2

denotes the coordinate space of the spatial process which gives rise to a

saliency map and Rþ is the domain of the importance metric. Saliency maps are hence samples

from a marked point process Pðx; ZÞ � Gðgjx; ZÞ, where Pðx; ZÞ determines the location of

important image coordinates and Gðgjx; ZÞ determines the location specific distribution of the

importance metric. This notation allows expressing lack of importance of image regions as

null hypothesis that the spatial process Pðx; ZÞH0
on R2 which gives rise to an observed feature

in the saliency is a homogeneous Poisson process. The expectation that important image

regions are characterized by the existence of sparse clusters of large metric values suggests

using a one sided alternative.

To obtain reproducible verdicts about image regions which contribute substantially to pre-

dictions, the proposed test is applied on a pixel per pixel basis in a non-parametric manner.

1. We start by regarding a saliency map to be a sample which was generated under the alterna-

tive hypothesis Pðx; ZÞH1
� Gðgjx; ZÞH1

.
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2. A sample of the null hypothesis Pðx; ZÞH0
� Gðgjx; ZÞH0

in the marked space is obtained by

randomly reshuffling all x and y coordinates and rearranging the importance metric values

of the original saliency map.

3. To assess the null hypothesis against the alternative at position (x, y), we compare the (x, y)

surrounding local averages in the saliency map which represents the null hypothesis against

the respective average value of the original saliency map. For calculating averages we con-

volve the saliency maps with a k × k pixel wide Gaussian kernel to obtain gH1(x, y) for the

alternative hypothesis and gH0(x, y) for the null hypotheses. Using a one sided alternative

implies that we obtain evidence in favor of the null hypothesis H0 if gH0(x, y)�gH1(x, y).

4. A p-value map is obtained by iterating sample generation under the null hypothesis N
times, where N is sufficiently large and counting for every location the number of instances

n(x, y) for which we obtain evidence in favor of H0. Location specific p-values are obtained

as ratio

p-valðx; yÞ ¼ nðx; yÞ=N: ð5Þ

5. To obtain a reproducible visualization from the saliency map we use a p-value threshold of

0.001 to obtain a binary mask which indicates image regions which are by LPR, GRAD-

CAM or GP-LVM considered important for the calculated predictions. The sample specific

nature of LPR and GRAD-CAM suggests to display the discretized p-value map on top of

the image to highlight important image features. The saliency map which we obtain for

GP-LVM assesses the data set in its entirety. In this case we use the binary mask to set all

saliency values in irrelevant image regions to zero.

The implementation of this test relies on the Python OpenCV interface for calculating con-

volutions and sets k = 5 and N = 104.

Performance metrics. To assess whether geographic variation exists in Ethiopian Nile

tilapia body features, we perform in this paper an indirect analysis. The existence of population

specific morphotypes would imply that image derived features contain information about the

lake of origin of fish. If such information exists, we expect to obtain reasonably good perfor-

mance characteristics. Drawing respective conclusions depends therefore on quantitative per-

formance metrics which allow us to compare classifiers. While we did already point out that

we use ten fold cross testing [46] to obtain unbiased estimates, we will now summarize three

complementary metrics of classification performance.

1. Classification accuracy (Acc) is the most commonly applied performance metric for classifi-

ers [46]. Evaluating classification accuracy requires us to determine the rate of agreement

between predicted and true labels. If we use N to denote the number of samples and use ŷn

as predicted and yn as true label and define dðŷn ¼ ynÞ ¼ 1 if labels agree and dðŷn ¼ ynÞ ¼
0 if labels disagree, generalization accuracy is expressed as

Acc ¼
100

N

XN

n¼1

dðŷn ¼ ynÞ%: ð6Þ

Rating a classifier as reasonably good requires that its Acc is larger than the Acc obtained

when predicting the majority label.

2. While Acc captures predictive accuracy, taking posterior probabilities for class, P(y|xn),

into consideration provides further insight. Mutual information (MI) [73], I(x, y), between
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input x and class labels y provides us with such a metric. We obtain

Iðx; yÞ �
1

N

XN

n¼1

X

y

Pðyn ¼ yjxnÞ log 2

Pðyn ¼ yjxnÞ

Pðyn ¼ yÞ

� �

; ð7Þ

where use of log2 leads to quantifying MI in bit. To rate a classifier by MI as reasonably

good we require that I(x, y) is larger than zero.

3. Assessing classifiers is in statistical terminology equivalent to conducting an experiment.

Repeating the assessment will thus inevitably change Acc and I(x, y). To ensure that differ-

ences are systematic requires confirming that randomness could not have caused the differ-

ences. For assessing classifiers a and b McNemar [74, 75] proposed an optimal paired

significance test. McNemars statistic consists of counts na and nb. While na counts the num-

ber of samples which were correctly predicted by classifier a and wrongly classified by clas-

sifier b, nb counts the number of samples that were wrongly classified by classifier a and

correctly predicted by classifier b. McNemars procedure is based on the idea that differ-

ences between both classifier arise by chance if (na, nb) has a Binomial distribution with

count na + nb and probability 0.5. Denoting the probability mass of the binomial distribu-

tion as PBððk; lÞ; kþ l; 0:5Þ and assuming a two sided alternative hypothesis, we get the

McNemar p-value (Sig) as

p ¼ 2
Xminðna ;nbÞ

n¼0

PBððminðna; nbÞ � n;maxðna; nbÞ þ nÞ; na þ nb; 0:5Þ: ð8Þ

A reasonably good classifier will in comparison with predicting the majority label for all

samples obtain a McNemar p-value, p< 0.05. For visualization purpose, we truncate p-val-

ues to be smaller than 0.99 and apply a logit transformation logit(p) = log(p) − log(1 − p).

Generalization accuracy, mutual information and McNemars significance test allow investi-

gating whether Nile tilapia images contain information about the origin of fish samples.

Mutual information provides as the name suggest a direct quantification of information con-

tent. Generalization accuracy and McNemars test require however to compare the image and

GPA-shape based classifiers against predicting the majority label. Predicting the majority class

is an input independent lower bound for generalization performance. To substantiate that Nile

tilapia morphology depends on the lake of origin, respective classifiers must hence significantly

outperform predictions which only depend on counting labels [46].

Availability

To allow reproducing our findings we provide all fish images, raw landmark coordinates and

annotation information as S1 File. All data and code from this paper are in addition available

in a public GitHub repository under GPL v3 license. The repository can be reached at https://

github.com/TW-Robotics/NT_BodyParts. Details on how to use the repository are provided

online as markup file.

Results

The results section provides first some insight into GPA and GP-LVM features. We will subse-

quently assess the results which we obtain from all analysis pipelines in Fig 1 on a global scale

by looking at generalization accuracy, mutual information and McNemar p-values. To rule

out that non biological information in the images about lake impedes drawing reliable biologi-

cal conclusions, we provide a careful assessment of image features which are extracted by
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GP-LVMs and CNNs. The ARD metrics of GPC and HMC-MLP will finally be used to identify

GPA transformed landmarks and GP-LVM image regions of Nile tilapia which our analysis

considers relevant for predicting sample origin. Based on this analysis we identify Nile tilapia

body features that contribute most to the divergence between populations. The identified dif-

ferences in Nile tilapia morphology may be related to adaptation processes, change events, or

result from phenotype plasticity.

GPA transformed landmarks

We use the manually assigned landmarks which we transform to GPA scale features as bench-

mark solution for assessing information contained in Ethiopian Nile tilapia fish about their

respective habitat. The 28 GPA scale features which we illustrate in Fig 4 are labeled by the

respective lake of origin. Gaussian process and HMC-MLP classifiers are subsequently used

for predicting the lake from the respective GPA features. Performance metrics provide an

indication of whether Nile tilapia populations show signs of adaptation to origin. ARD based

rankings provide information about which Nile tilapia body parts contribute the most to dif-

ferentiating between populations.

GP-LVM features

To calibrate the number of inducing points GP-LVM inference is run with a latent dimension

of 36. By visual inspection of the approximate log marginal likelihood (data not shown) it

Fig 4. Scatter plot of GPA transformed landmark positions. The coordinates of the landmarks listed in Table 2 are processed

with a generalized Procrustes analysis. After color coding by lake, the 14 two dimensional landmark coordinates of all Nile

tilapia samples are visualized as dots. The solid line connects the center locations of all landmarks.

https://doi.org/10.1371/journal.pone.0249593.g004
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became evident that using more than 100 inducing points has only minor effects on the

approximation. A subsequent search for optimal model complexity revealed that the approxi-

mate log marginal likelihood peaks, if we set the latent dimension to 100 as well. It is important

to point out that this approach to model selection considers the representational capabilities of

GP-LVM as generative model for unsupervised image analysis. The optimal number of fea-

tures for the supervised task of predicting the lake of origin of Nile tilapia images may be con-

siderably smaller. To use a feature vector which is comparable with the number of landmarks,

14 of the 100 features were selected as inputs for classification. Fig 5 visualizes the expected

values of Q(X) in the first four GP-LVM dimensions as scatter plot matrix. Coloring by lake

shows that dimension F0 allows distinguishing samples from lake Chamo from the samples

gathered at the other lakes. Dimensions F1 and F2 a clearly distinct for lakes Koka and Tana.

Fig 5. Visualization of GP-LVM projections. A scatter plot matrix provides pairwise impressions of the latent dimensions F0 to F3. Coloring by lake

shows that dimension F0 separates lake Chamo from the other lakes while dimensions F1 and F2 show distinct values for lakes Koka and Tana.

https://doi.org/10.1371/journal.pone.0249593.g005
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Performance metrics

To define population specific morphological features robustly we apply several data analysis

pipelines in parallel. Table 3 reports for all analysis pipelines the generalization accuracy (Acc),

the mutual information (MI) and the McNemar p-value (Sig) which we obtain by averaging

over ten randomizations. The analysis pipelines are denoted by abbreviations. We use Deep

CNV+CNN for the convolutional neural network, GPA+GPC for the Gaussian process classi-

fier on Procrustes shape features, GPA+HMC-MLP for the Hybrid Monte Carlo multi layer

perceptron on Procrustes shape, Top GP-LVM+GPC for the Gaussian process classifier on 14

most relevant GP latent variables as rated by GP-LVM ARD levels, Top GP-LVM+HMC-MLP

for the Hybrid Monte Carlo multi layer perceptron on 14 most relevant GP latent variables, Sel

GP-LVM+GPC for the Gaussian process classifier on 14 selected GP latent variables and Sel

GP-LVM+HMC-MLP for the hybrid Monte Carlo multi layer perceptron on 14 selected GP

latent variables. The McNemar p-values compare the GPA+GPC pipeline which achieved the

least generalization accuracy against all other classification results.

To assess the range of values which we obtain by randomizing, Fig 6 visualizes individual

metric values which were obtained on reshuffled data as box plots. The results in Table 3 and

Fig 6 suggest that there are two groups of analysis pipelines. A group of methods with signifi-

cantly higher generalization accuracy and larger mutual information consists of VGG-16 and

both stand alone classifiers when using the 14 most relevant GP-LVM features. A second

group with significantly lower generalization accuracies and mutual information contains the

stand alone classifiers when we use 14 selected GP-LVM features or the Procrustes trans-

formed landmarks as inputs. When interpreting the results, we should first note that the

selected 14 GP-LVM features were carefully chosen: a GP-LVM dimension would only be

used if feature specific variation in image space gave no concern for underlying technical con-

tamination. This selection anticipates that variation which does not originate from genuine

fish attributes might cause the improved results which we observe with some of the analysis

methods.

Table 3. Average performance metrics of all tested classifiers.

Method Acc [%] MI [bit] Sig

Deep CNV+CNN (VGG-16) 93.3 2.53 �0.001

GPA+GPC 70.7 1.05 – – –

GPA+HMC-MLP 75.0 1.66 0.15

Top GP-LVM+GPC 92.5 1.38 �0.001

Top GP-LVM+HMC-MLP 91.6 2.12 �0.001

Sel GP-LVM+GPC 72.1 1.03 0.80

Sel GP-LVM+HMC-MLP 74.4 1.54 0.37

This table summarizes the average generalization accuracy (Acc) in percent, average mutual information (MI) in bit

and McNemar significance (Sig). McNemar p-values result from pairwise comparisons between Gaussian process

classification of GPA landmarks and six other combinations of input features and classification methods. The

assessed classification methods are VGG-16, a 16 layer convolutional neural network (Deep CNV+CNN), a Gaussian

processes classifier (GPC) and a multi layer perceptron inferred with hybrid Monte Carlo sampling (HMC-MLP).

The assessed input features are generalized Procrustes analyzed landmarks (GPA) and the expectations in feature

space of a Gaussian process latent variable model (GP-LVM). For the latter feature representation we considered two

different selections: Top GP-LVM refers to the 14 most relevant latent dimensions and Sel GP-LVM refers to the 14

highest ranked dimensions with features excluded which by showing variation in the image background were

suspected to be influenced by technical artifacts.

https://doi.org/10.1371/journal.pone.0249593.t003
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Features in image space

To investigate in detail how the analysis pipelines which we compare in Fig 6 and Table 3 arrive

at their predictions, we have to investigate which image features are deemed important for pre-

dictions. As is further detailed in the methods section, the values in the GP-LVM saliency maps

in Fig 7 make use of the generative nature of GP-LVM and are projections of variation in the

latent space of the GP-LVM. To provide a more objective visualization of image regions which

contribute to the latent features, insignificant entries of the saliency map are set to zero. The

mask which is used for that purposes is a result of the p-value calculation in Eq (5) and applying

0.001 as significance threshold. The layout of Fig 7 is such that even rows illustrate the original

Fig 6. Box plots of generalization metrics that were obtained by resampling. The metric values which give rise to these box plots

were obtained by ten fold cross testing after reshuffling the samples ten times. Every box illustrates the performance characteristics of

a distinct combination of input feature and classifier. A description of the acronyms is provided in the legend of Table 3 and in the

text. a) illustrates generalization accuracies in percent. b) illustrates the distribution of Mutual information and c) visualizes the

McNemar p-values on a logit scale when comparing GPA+GPC against the other analysis pipelines.

https://doi.org/10.1371/journal.pone.0249593.g006
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Fig 7. Variation of GP-LVM feature dimensions in image space. Image color is obtained by mapping variation of

individual GP-LVM dimension to image coordinates. Low variation is represented as blue color. Intermediate

variation has yellow color and red represents image regions which correspond to large variation in GP-LVM space.

Odd rows display the entire saliency map. Even rows retain only highly relevant pixels which are by Eq (5) assessed as

significant (p-value<0.001). Fig 6a) illustrates 12 GP-LVM dimensions which represent genuine fish morphology or
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saliency maps and odd rows show the masked saliency maps. Individual images in Fig 7 illus-

trate the projections of selected latent GP-LVM dimensions and are tagged as such. Blue color

indicates regions which show little influence and red highlights the most influential image

regions. Fig 7a) displays 12 of the 14 GP-LVM features which result in a classification perfor-

mance which is comparable with the Procrustes landmark based classifications. We may confi-

dently conclude by visual inspection of the masked map that variation of Nile tilapia body

features gives rise to these latent variables. Fig 7b) visualizes 4 of the 14 top ranked latent

GP-LVM dimensions which show noticeable to large response to variation in the image back-

ground. These latent dimensions are in part caused by technical variation and thus not entirely

rooted in fish phenotype. The improved results which we obtain in Table 3 for the the two anal-

ysis pipelines which use the 14 top ranked GP-LVM dimensions are hence aided by technical

variation which is correlated with the class label. Observing large generalization accuracy is

thus not sufficient to justify statements that Nile tilapia morphology adapts to the fish habitat.

To provide insight about which features in images give rise to the CNN predictions Fig 8

displays selected saliency maps which we obtain with LPR [48, 71]. The chosen Nile tilapia

images resulted for the respective lakes in largest posterior probability. The first column in Fig

8 displays the sample image. The second column displays the LPR based saliency map which

represents the importance of image pixels for predicting the lake of origin by a color scheme.

Blue indicates pixels with low importance, yellow denotes mid important pixels and red is

used for very important pixels. To obtain an objective indication for important regions we cal-

culate pixel specific p-values according to Eq (5) and construct a binary map by applying a p-

value threshold of 0.001. The third column of Fig 8 illustrates the sample image and displays

the resulting importance mask as overlay in transparent red. Inspecting the saliency maps it is

apparent that the CNN finds for all samples genuine morphological features of Nile tilapia

which are indicative of the lake of origin. While the samples for lakes Hawassa, Koka and

Ziway give no reason for concern, we observe for lakes Chamo and Langano that the image

background and for lake Tana that the fixation pin have a significant influence on the pre-

dicted probabilities. It is worth noting that the fixation pin has no influence in the prediction

given for the lake Ziway sample. Whether or not a particular artifact provides information for

a prediction is sample dependent. The visualization in Fig 9 which has the same structure as

Fig 8 shows examples where rogue image features like dirt particles, variation of the image

background and the occasional presence of the fixation pin contribute significantly to predict-

ing the lake of origin. We conclude therefore that the performance metrics for the CNN in

Table 3 are not only a result of genuine differences in Nile tilapia phenotype but aided by arti-

facts which show some correlation with lake of origin. The GPA-shape features and the 14

carefully selected GP-LVM projections are a more reliable representation of visual differences

of Nile tilapia which are biologically meaningful. Visualizations of Grad-CAM [69, 70] derived

saliency maps are provided as S1 and S2 Figs. While Grad-CAM corroborates that predictions

samples are influenced by features in image regions which are clearly not related to the fish,

the maps provide much coarser impressions.

Detection of Nile tilapia population specific morphology

The visualizations in Figs 7 and 9 hint visual features of Nile tilapia which are indicative for the

lake of origin. The visualization however also shows that the CNN and classification with the

skin markings and allow to draw valid conclusions about location specific adaptation. Fig 6b) illustrates 4 rogue

GP-LVM feature dimensions which represent technical artifacts. The improved performance we observe in Table 3 for

Top GP-LVM inputs is thus aided by technical artifacts which are correlated with the class label lake.

https://doi.org/10.1371/journal.pone.0249593.g007
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Fig 8. LPR diagnostic plots for highly representative Nile tilapia samples. This figure illustrates fish images, LPR

saliency maps and diagnostic plots which display fish images and red color mask to highlight image features which

contribute significantly to the prediction. The chosen samples are highly representative for the respective lake of origin.

While the predictions of the samples for lakes Hawassa, Koka and Ziway are fine, the predictions for lake Chamo and

Langano use information in the image background. The prediction of the lake Tana sample is aided by the presence of

the fixation pin.

https://doi.org/10.1371/journal.pone.0249593.g008
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Fig 9. Selected LPR diagnostic plots with visible contamination by technical artifacts. This figure illustrates fish

images, LPR saliency maps and diagnostic plots which display fish images and red color masks to highlight significant

image features. All images contain indications that genuine Nile tilapia body features are considered relevant for

predicting the lake of origin. It is however also obvious that features in the image background, dirt particles and the

presence of the fixation pin provide rogue information which aids predicting the respective lake of origin.

https://doi.org/10.1371/journal.pone.0249593.g009
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14 top ranked GP-LVM features overestimate the amount of information about lake specific

variation of Nile tilapia morphology. To assess whether population specific morphotypes exist

we compare the results in Table 3 against majority vote based predictions. Table 1 reports for

lake Ziway a maximum of 40 samples. Predicting lake Ziway for all samples results therefore in

a generalization accuracy of 19%, a mutual information of 0 bit and in McNemar p-values

�0.001 when comparing the majority rule with the predictions of all other analysis pipelines.

The result that Nile tilapia images contain information about the lake of origin is hence

observed for all data analysis pipelines. We can thus safely conclude that there are population

specific morphotypes which are likely the response to environmental and ecological factors

[12, 15–17].

To obtain a better understanding about which features contribute the most to morphoolo-

gical differences, we have a closer look at the inferred ARD hyper-parameters of GPC and

HMC-MLP. We visualize to this end the ARD level based rankings of the GPA-shape trans-

formed landmarks. Fig 10 displays the results separately for the Gaussian process classifier and

the hybrid Monte Carlo inferred MLP. To arrive at robust conclusions we look for agreement

between both classification results. Both rankings agree that the upper tip of the snout (UTP),

the posterior end of the mouth (EMO), the anterior insertion of the dorsal fin (AOD), and the

posterior insertion of the dorsal fin (POD), contribute to shape variation. We may therefore

conclude from the GPA shape features that the features that are more important to define pop-

ulation specific morphotypes are the dorsum and the snout of Nile tilapia.

To investigate which Nile tilapia body features are picked up by GP-LVM for distinguishing

the lake of origin, we combine the GPC and HMC-MLP ARD level ranks with the representa-

tion of GP-LVM feature variation in image space. Fig 11 illustrates to this end weighted

Fig 10. ARD level based ranking of GPA-shape features. The pie charts visualize for ranks one to five the relative number of occurrences of a

landmark being ranked at the respective position when repeating inference ten times on reshuffled data. The graph in a) illustrates the ranks which we

obtain with GPC based ARD levels. The graph in b) illustrates the ranks which we obtain with HMC-MLP based ARD levels. For improved

reproducibility we look for agreement between both rankings to conclude that the upper tip of the snout (UTP), the posterior end of the mouth (EMO),

the anterior insertion of the dorsal fin (AOD), and the posterior insertion of the dorsal fin (POD) show signs of differentiation. This suggests that

dorsum and snout are affected the most from adaptation.

https://doi.org/10.1371/journal.pone.0249593.g010
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Fig 11. ARD level based visualizations of GP-LVM features in image space. This figure illustrates Nile tilapia body

regions which are indicative for sample origin. Regional importance is visualized as color transition with blue

indicating little importance, yellow indicating intermediate importance and red indicating high importance.

Importance of image regions combines the GP-LVM variation maps in Fig 7 with the ARD level based ranks which

obtain by classifying the lake of origin from 14 selected GP-LVM dimensions with Bayes inferred GPC and
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averages of the GP-LVM visualizations in Fig 7. The visualizations in Fig 11 result from using

the relative number of occurrences of the first and second ranked GP-LVM dimensions when

ordering by ARD levels. Individual saliency maps are tagged by the classifier which provides

the ARD levels. Odd rows display the entire saliency map. Even rows focus attention on image

regions which we assess by p-values calculated according to Eq (5) as significant (p-value

<0.001). Irrespective of whether we rank by GPC ARD or HMC-MLP ARD we can see that

the anterior dorsal region of Nile tilapia is the most important feature of fish for adaptation to

habitat. This observation corroborates the result which we observe on the GPA-shape based

assessment that landmarks in the anterior and dorsal regions vary on dependence of the sam-

ples lake of origin. By investigating the second rank positions we can deduce that both classifi-

ers also agree about the contribution of the belly region, posterior dorsal region and to some

extent the caudal fin to shape differences of Nile tilapia.

Discussion

We hypothesize in this paper that complementary analyses are required to reliably infer

whether Nile tilapia morphology is population specific. This hypothesis is evaluated against

the alternative hypothesis that applying one machine learning method naïvely may result in

conclusions about Nile tilapia phenotype being affected by technical artifacts. Established

knowledge [35, 51] lead us to suggest that a technical reliable solution should look for agree-

ment among several methods. We use to this end GPA scale transformed landmarks [40, 41]

to capture morphology and apply GP-LVM [38] to extract visual features of Nile tilapia sam-

ples. GPA scale features and the GP-LVM representation are subsequently used as inputs to

GPCs [42, 43] and HMC-MLPs [44, 45] to predict the lake of origin of 209 Nile tilapia samples.

To compare the results which we obtain with classical ML with modern approaches, we fur-

thermore include the Keras implementation of the VGG-16 deep learning architecture [24, 64]

in our evaluation.

While looking for agreement among state of the art ML secures a technically optimal

solution, recent discoveries by [37, 48, 69] suggest that excellent performance may be aided

by what [36] call a Clever Hans predictor. Artifacts in the input data which happen to be cor-

related with the target label “lake” will aid predictive accuracy and lead to overly optimistic

biological conclusions. We find that LPR generated feature maps find the occasional pres-

ence of a fixation pin, variation in image background and dirt particles important for pre-

dicting the lake of origin of Nile tilapia samples. This result provides clear evidence that

obtaining biologically sound conclusions depends on complementary assessments to agree

about findings and to rule out that reported biological findings are a result of artifacts in the

data.

To avoid that we misjudge rogue features as evidence of true morphological change, we

subsequently removed suspicious GP-LVM features. Despite that the reduced feature set lead

to a significant loss in generalization performance, the results still allow concluding that there

are population specific morphotypes. An investigation of ARD based ranks of landmarks in

GPA shape representation in Fig 10 reveals that the snout and the anterior dorsum of Nile tila-

pia are most susceptible to adaptation. An investigation of weighted image representations of

HMC-MLP. Odd rows in Fig 7 show the importance levels of the top two rank positions. Even rows focus attention on

image regions which are by Eq (5) assessed as significant (p-value<0.001). Visualizations are tagged by the

classification procedure which provides the ARD levels for ranking. With red indicating important image regions, the

visualizations allow the conclusion that the anterior dorsal region, the belly region, the posterior dorsal region and the

caudal fin of Nile tilapia are indicative for the origin of fish specimen.

https://doi.org/10.1371/journal.pone.0249593.g011
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important GP-LVM feature variability in Fig 11 corroborates a predominant susceptibility of

the anterior dorsum to adapting to fish habitat. The visual representation of the weighted

GP-LVM features also reveals that the fish belly, the posterior dorsal region and the caudal fin

show signs of differentiation which are likely the response to environmental and ecological fac-

tors [12, 15–17].

An elaborate ML analysis has thus proven potential to provide new insight into how Nile

tilapia morphology changes. The combination of GP-LVM, a careful feature analysis and

subsequent classification has the advantage of providing an unbiased view which detects

morphological features irrespective of where landmarks are placed. Even if we have to

investigate GP-LVM characteristics to rule out that biological conclusions are misled by

image artifacts, a GP-LVM based analysis needs moreover considerably less time than man-

ually placing landmarks in every Nile tilapia image. Carefully designed ML data analysis

pipelines are thus very useful for research tasks which fall into the domain of classical

morphometrics.

A final remark about ML driven knowledge discovery concerns the importance of careful

data collection. To safeguard obtaining biologically meaningful results the experimental plan

has to avoid introducing artifacts which are correlated with the dependent variable. State of

the art ML methods are extremely powerful and will use all information which aids predic-

tions. If discriminatory information which has no biological origin remains undetected, the

conclusions drawn from such analysis may be misleading. Analyses which aim at identifying

differentiated morphological features from sample images must keep technical variation in

images like the orientation of samples, the placing of fixation pins and the image background

at an absolute minimum.

Supporting information

S1 Fig. GRAD-CAM diagnostic plots for highly representative Nile tilapia samples. This

figure illustrates fish images in column one, GRAD-CAM diagnostic plots in column two and

fish images overlayed with a red colored GRAD-CAM derived significance mask in column

three (p-val<0.001, calculation according to Eq (5)). Visualization are tagged by lake of origin

and show samples which are highly representative for the respective lakes. While the samples

of lakes Hawassa, Koka, Tana and Ziway raise no concern, the visualization of the samples for

lakes Chamo and Langano suggest a significant dependency of predictions on the image back-

ground.

(TIF)

S2 Fig. GRAD-CAM diagnostic plots with visible contamination by technical artifacts.

This figure illustrates fish images in column one, GRAD-CAM diagnostic plots in column two

and fish images overlayed with a red colored GRAD-CAM derived significance mask in col-

umn three (p-val<0.001, calculation according to Eq (5)). Except for the lake Tana specimen

all samples show that predictions are aided by contamination with technical artifacts.

(TIF)

S1 File. Data archive. To allow reproducing the results in this paper we provide all data in a

zip archive. After expanding the archive users will find a directory Data with two subdirec-

tories. Further information about the resource may be found in the file readme.txt which

is located in the Data directory. A public GitHub repository which contains all data and

code under a GPL v3 license can be accessed by following the link https://github.com/

TW-Robotics/NT_BodyParts.

(ZIP)
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